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ABSTRACT 

The problem of controlling a system described by 

a set of difference equations when some of the system par- 
I 

ameters vary from their nominal value is analyzed. The 

system has both statistical and deterministic disturbances 

acting upon it. A control is to be synthesized which 

regulates the state of the system in an optimal fashion, 

as defined by a quadratic performance index, using only the 

available noisy measurements. 

The control system is arbitrarily chosen to com- 

prise a control loop and a parameter identifier, The 

identifier estimates the unknown plant parameters from 

normal observations of the plant input and output. The 

control loop alters its policy in accordance with these new 

parameter values. The control loop is obtained from a 

Dynamic Programming derivation which accounts for the deter- 

ministic as well as the statistical disturbances. The 

resulting system is comprised of a least squares state 

estimator, a feedback gain matrix operating on this estimate 

and a feedforward input term. 

The general type of parameter identifier con- 

sidered was of the least squares type. Two methods of using 

vii 



least squares techniques are extensively analyzed. The , 

chosen system uses a differential corrections method gener- 

ically similar to a Kalman filter. Because the identifier 

works with the system state equations augmented by the 

parameters, state estimates are also generated.. These are 

used in the control loop. The new parameter information is 

used to recompute the gain matrix one step backward from the 

nominal Riccati matrix. For a linear system the identifica- 

tion method can be shown to converge whenever the percentage 

errors in the parameters are sufficiently small. 

The method of identification and control was 

applied to the pitch control of a large flexible launch 

vehicle, ..Body mounted pitch and pitch rate gyros are the 

only sensors0 The vehicle model incorporated third order 

rigid body equations plus first bending mode. The control 

is to maintain pitch attitude and minimize the bending 

'vibration in the face of steady wind shears and gusts. The 

entire system was evaluated on a digital computer. Without 

the parameter identification a 20% reduction from nominal 

in the bending frequency caused severe vibration. With par- 

ameter identification, this vibration was much reduced. 

Steady pitch angle was maintained to less than one degree 

for worst case wind conditions over the flight interval. 

viii 



SECTION I 

1.1 Introduction 

The words "adaptive controY seem to have a high 

emotional content for control systems engineers. They imply 

a system which, like a man, can adjust itself to a changing 

environment. The adaptive system will therefore be the 

system designer's magnum opus. Once completed, he need no 

longer be concerned with what the controlled process does; 

the adaptive system will figure it out and take steps. 

Exactly how such a system is to be designed in the first 

place seems to take a little longer, and there is a faint 

suspicion that the unmodified concept of adaption is a 

chimera. The work reported here is loosely referred to as s 

"adaptive", but in a rather specialized sense.-The analysis 

which is developed arose from a problem suggested to the 

author and Dr. Rob Roy by M. Borelli of NASA. It is the 

one analyzed in Section IV. However, as is often the case, 

consideration of a specific problem led to a more general 

method than the original problem required. Roughly, the 

control problem had the following characteristics: 

1. Only certain measurements of the process were 

allowed by the physics of the situation and 
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the available engineering technology. 

2. Although a good mathematical approximation of 

the process behavior was available, certain 

parameters of that description could not be 

accurately forecast due to engineering and 

economic limitations. 

30 The control problem was not *'easy" in the 

sense that the process description was complex 

and the performance requirements were 

stringent. 

4. State and measurement disturbances were 

present which had to be accounted for. 

It is clear that such a set of features is common to a wide 

class of systems. 

Although conventional feedback is known to possess 

the ability to handle problems of the sort listed, the 

general control structure shown in Figure 1,l was postulated. 

It is comprised of a feedback controller which processes the 

measurable outputs and generates a control input based upon 

them. A parameter identifier also observes the outputs of 

the plant as well as the control inputs. Based upon these 

observations, new parameter estimates are generated and fed 

‘j 
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to the controller which in some fashion alters its control- 

law in accordance with these estates. It is this feature 

of the proposed system which leads the author to use the 

word "Wadaptivel*. Whether this is a "besP structure for an 

adaptive controller is certainly open to debate. Horowitz 14* , 

for instance, feels otherwise. 

For reasons of personal preference and esthetics, 

the identifier was to function with limited storage capacity 

and finite computing speed. Since it is assumed from the 

structure of the controller that the identification is per- 

formed on. line, those identifiers using the entire measure- 

ment history or correlation techniques are excluded. The 

control law proper is to be designed based upon the develop- 

ments of optimal control theory. This decision was based 

upon the great flexibility and generality of these methods 

together with the fact that a feedback controller usually 

results from their use. Because a feedback control is 

directly derivable from optimal control theory for the case 

where the process equations are linear, attention is re- 

stricted to that case. Further, because digital controllers 

* 
Throughout this thesis, superscript 

to the similarly numbered items in SECTION VI, 
CITED. 

4 

numbers refer 
LITERATURE 



utilize difference equations and most estimation literature 

is written in terms of discrete measurements, the process 

is assumed to be described by a vector difference equation. 

The corresponding results for the continuous measurement 

case are indicated in the second Appendix, 

1.2 Historical Review 

The development of optimal control theory is 

partially a recognition and use of the Calculus of Varia- 

tions to solve control problems. Bellman3 provided 

alternate viewpoint for the problem of minimizing a 

formance index subject to a differential constraint 

to the Markov property of statistics. Pontriagin 23 

an 

per- 

similar 

and his 

co-workers developed powerful extensions to the Calculus of 

Variations and Merriam 22 has been in the forefront in 

applying computational methods to the solution of optimal 

control problems. The primary advantage of optimal control 

lies in the formalized design procedure. A measure of per- 

formance is set up and the control system which is "best" in 

the sense of maximizing the performance measure results 

directly from the mathematical manipulations. 

Although the Calculus of Variations was applied 

to deterministic systems, interest soon arose in optimi- 

5 



zation of systems driven by random disturbances and subject 

to measurement noise. Bellman referred to such problems as 

the 3tochastic Control Problem", and considerable work has 

been done on this class of problems. Florentin 11 expanded 

"Dynamic Prograunuinglr to include the stochastic control 

problem, and derived the stochastic Hamilton-Jacobi equation. 

For linear systems with quadratic error measure, he was able 

to derive the feedback gain matrix of the controller, 

p&&6’ 17 brought to the attention of the control engineer 

the possibilities of using the Least Squares estimation tech- 

niques from statistics for the estimation of the system state 

given noisy measurements. Joseph and Tou 15 paralleled 

Kalman's use of orthogonal projections to show that the 

solution of the stochastic control problem for linear systems 

with Gaussian noise and quadratic error measure was a Kalman 

estimator of the state driving the conventional feedback gain 

matrix of optimal control theory. Although these develop- 

ments assumed uncorrelated or "white" noise, results for 

colored noise have been obtained by Bryson and Johansen 6 . 

The entire least squares estimation problem with correlated 

measurements has also been independently derived by Battin 
2 

in connection with the problem of differential corrections 

to trajectories. All of the control work, however, considers 
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only the regulator problem and assumes zero mean dis- 

turbances. 

The use of estimation techniques to fit models 

of processes to observed data has attracted considerable 

current interest from control engineers. Use of the Least 

Squares method dates from Levin 21 who estimated the impulse 

response of a system with noisy measurements. Kerr and 

Surber2' considered observation of the system during normal 

operation and showed how to compute the expected mean square 

error of the identification. Surber26 later applied 

gradient techniques to the problem of fitting a model to 

data. Kopp and Orford 18 used linear regression analysis 

to identify the parameters of a second order system, The 

control law was modified in an algebraic relation to the 

parameter change to maintain the transient response invar- 

iant relative to a model second order system. Lee" used 

Least Squares for systems with input noise only. He also 

gives a good summary of the relations of filtering and iden- 

tification. Recently, Cox 30 has used Dynamic Programming to 

estimate state variables in non-linear cases. The resulting 

equations are not easily solved, however. 

The problem to which the method is applied is the 

pitch control of a large flexible launch vehicle. Due to 

7 



the vehicle flexure, the pitch and pitch rate sensors measure 

both rigid body motion and local flexure. Further, the bend- 

ing modes cannot be overly .excited by the system or the 

vehicle will break up. This problem is of great current 

interest as might be imagined. Many approximate schemes of 

taking out the flexure effects from the measurements have 

been proposed. Tutt and Wyameyer 27 use a model of the 

25 vehicle; Smyth and Davis propose notch filters with 

adjustable center frequency to take out the bending. Lee2' 

uses a redundant gyro to try and cancel out the bending in 

the measurements. Of these, only the notch filter approach 

has had much engineering success and it depends upon bending 

frequencies being higher than the speed of response of the 

closed loop system. For this study only first order bend- 

ing and no slosh modes are included. Pitch and pitch rate 

gyros are assumed to be the only sensors. State noise enters 

as wind gusts along with a steady wind which includes an 

angle of attack disturbance. 



SECTION II 

CONTROL OF LINEAR PLANTS SUBJECT TO DISTURBANCES 

This section studies the problem of regulating a 

linear plant which is subjected to state disturbances of 

both a random and deterministic nature. Moreover, it is 

assumed that the state cannot be measured exactly, and that 

such measurements as are available are corrupted by random 

noise. 

For strictly random disturbances of a certain 

form the result has been known for some time. Joseph and 

Tou15 showed that for white noise of mean zero the optimal 

controller is comprised of an optimal state estimator in 

the form of a Kalman Filter 16 , and the usual feedback gain 

matrix which results in the noise free case where all states 

are measurable. However, their derivation followed Kalman 

in using the projection theorem which lends little insight 

into how the problem at hand can be generalized. 

As might be expected, the presence of determin- 

istic state disturbances does not change the feedback gains 

nor the filter constants but causes a feedforward term to 

appear which acts to balance out the known disturbance. The 

deterministic measurement disturbance simply appears as an 

9 



additive term in the filter plant model. 

2.1 Control with Stochastic Disturbances 

The problem of minimizing a quadratic performance 

index subject to both stochastic and deterministic disturb- 

ances and measurement errors will be analyzed mathematically 

in this Section, The plant is described by the linear 

difference equation 

x(k + 1) = A(k) x(k) + B(k) m(k) + r(k) u(k) -I- dl(k) 

(2.14) 

The state x cannot be measured directly, rather the noisy 

measurement vector z related to the state by the linear 

relation 

z(k) = C(k) x(k) + L(k) v(k) + d2(k) (2.1-2) 

is available for control purposesa The control input m(k) 

is to be manipulated so as to achieve a minimum of the cost 

function 

N-l 

J+ c [xT(k + 1) (k + 1) x(k + 1) 
k=O 

+ mT(k) Q(k) 44 1 (2.1-3) 

The disturbances in equations 1 and 2 have been segregated 

into the deterministic ones, dl(k) and d2(k), and the random 

10 



ones, u(k) and v(k). Since any random variable with non- 

zero mean is the sum of the mean plus another random variable 

of zero mean it is not restrictive to assume that u(k) and 

v(k) have a mean of zero. The second order statistics of 

u(k) and v(k) are assumed as unit covariance matrices. 

Compactly this is written 

E lU(k) u'(j)) 3 'kj E [V(k) VT(j) I p 'kj 

E [u(k) v'(j))= 0 (2.1-4) 

So that u and v are assumed to be independent white 

sequences. Since the noise gain matrices L and r can 

account for any other variance, the unit variance assumption 

is also not restrictive. On the other hand, the use of 

white sequences is a definite limitation. One method of 

handling correlated noise is to adjoin the necessary filters 

which produce that noise from a white sequence to the plant 

description. This however produces a system which is not 

completely controllable. Other authors 2, 6 have considered 

the estimation problem and obtained results directly. This 

analysis will be restricted to the statistics given by 

(2.1-4). Figure 2-l shows a block diagram of the system to 

be controlled. 

In order to maintain a meaningful estimation 

11 
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Figure 2.1 Linear Discrete Plant 
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problem even when the state noise is identically zero, the 

initial conditions of the plant are assumed drawn from a 

random population such that 

cov [x(O))= PO (2.1-5) 

Because the criterion function J contains the states x(k), 

it is itself a random variable. In this case it is there- 

fore more meaningful to work with the mean of J averaged 

over the joint distribution of u, v and x(0). However, by 

Bayes Theorem, that is equivalent to averaging first over 

the disturbances , given the initial conditions and then 

averaging over the initial conditions. This is done in 

order to obtain the plant structure. 

To apply Dynamic Programming it is necessary to 

begin by defining the function 

Min E_ [$ ylxT(i+ 1) S(i+ 1) Jk(X(k)) = m 
u,vIx(O) i= k 

x(i + 1) + mT(i) Q m(i)) 
3 

(2.1-6) 

From the principle of optimality, the minimum cost over 

any future control interval is a function only of the 

present state and the future control, This statement holds 

13 



for the stochastic cases since the cost function is an 

average quantity. Mathematically the principle is written 

E 
J,(x(k)) = '; u ,,I~(~) 2 1 $ ,xT(k + 1) S x(k + 1) 

+ + mT(k) Q m(k) + Jk + l(x(k + 1)) 1 

(2.1-7) 

The boundary condition for the recursive relation given by 

(2.1-7) is 

J+N)) = 0 (2.1-8) 

In order to obtain a solution of (2.1-7) the 

quantity Jk + l(x(k + 1)) will be assumed to have the form 

2 Jk + l(x(k + 1)) = [A(k 
-T 

+ 1) x(k + 1) + @(k + 1) 
I 

G 
1 

A(k + 1) x(k + 1) + B(k + 1) 
J 

+ yk + 1 

The matrix G is assumed to be positive semi-definite and 

yk + 1 is a non-negative scalar. The vector @(k + 1) has 

no restrictions as to its components. Equation (2.1-9) may 

also be written as 

2 Jk + 1 (x(k + 1)) = xT(k + 1) F(k + 1) x(k + 1) 

+xT(k+1)~(k+1)+~T(k+1)x(k+1)+4(k+1) 

(2.140) 

14 



by defining the quantities 

F(k + 1) = AT(k + 1) G A(k + 1) 

C(k + 1) = AT(k -I- 1) G p(k + 1) 

4 (k + 1) = sT(k + 1) G ~(k + 1) 

(2.141) 

The assumed form of Jk + 1 given by (2.1-10) may now be 

substituted back into equation (2.1-7) to obtain the cost 

function in terms of x(k + 1) and m(k). Substitution of 

the plant equation (2.1-1) for x(k + 1) gives JR(x(k)) as 

Jk(X(k)) = m";;, E 
1 - 
2 

[l 
A x(k) + B m(k) + I'u(k) 

u,v I x(O) 
-T 

+ dlW 
J 

R(k + 1) 
1 

A x(k) + B m(k) + r u(k) + dl(k) 
J 

+ cT(k + 1) 
1 

A x(k) + B m(k) t- dl(k) 
J 1 

+ A x(k) 

-T 
+ B m(k) + dl(k) 

I 
<(k + 1) -+ mT(k) Q m(k) + c(k + 1) 1 

(2.1-12) 

In obtaining this result, use has been made of the fact 

that the mean of u is zero0 The matrix R(k + 1) has been 

defined for convenience as 

R(k + 1) = S(k + 1) -I- F(k -I- 1) (2.143) 

15 



In order to separate the control and the estima- 

tion problem the terms involving the controlm(k) must be 

segregated. Equation (2,1-12). can be written, by com- 

pleting the square in terms of m(k) and again making use of 

the zero mean of u(k), in the form 

J,(x(k)) = f$) E 
u,v lx (0) 

'f BT R 1 A x(k) + dl-t- R-l 
1 

- -1 
Q+BTRB 

J 

-I- -A x(k) + dl+ R-l 
1 

-1 
R- RB -Q+BTRB 

1 I 
BT R 

1 -l Ax+d+R R'lc+ c(k + 1) f uTIYTR I- u 
I 

(201-14) 

Equation (2.1-14) places in evidence the quadratic dependence 

of J 
k 

upon the first term. Since it is the only one con- 

taining the controlm(k) the choice of m(k) must be such as 

to minimize the magnitude of that term. The correctness of 

the form of (2.1-14) depends upon the existence of an inverse 

for the matrices 
L 
-Q + BT RB)and R; Actually it is'not . . 

-1 
necessary that R be positive definite since the R term is 

only used for convenience. This term arises when the c(kcl) 

16 



term is included with the Ax + d quantity to complete the 

square. If R is symmetric then it may altiays be.written as 
7 

the,product of two matrices R 7 MTM and by expanding in 

terms of MAX i- Mdl + c the same result ‘is obtained. The 

other inverse is more serious. Its presence requires that 

either Q or R be positive definite. Assume for the moment 

that this is so. 

In order to separate the control and the estima- 

tion problem, write the control as 
I 

m(k) = - K(k) f;(k) - h(k) (2.1-15) 

where 

K(k) = L -Q(k) + BT R(k + 1) B] -'BT'R(k +l) A(k) 

BT R(k + 1) 
- -1 

B 
1 

BT -R(k + 1) dl(k) + c(k +l)j 
1 

(2,146) 

Define the error term 

G(k) = x(k-) - ^x(k) (2,1-17) . 

Then the performance index J,(x(k)) is minimized with 

respect to m(k) if 

E .A 
u,vlx (0) 2 

"xT(k) KT(k) + BT RB K(k) g(k) (23-18) 1 
17 



is minimized with respect to G. But this is precisely the 

form of the estimation problem as formulated by Kalman and 

others. Choose an estimate of the state g(k) which mini- 

mizes the weighted sum of the square errors. 

Define the matrix 

H(k) = KT(k) 
1 

Q(k) + BT R(k + 1) B 
1 

K(k) (2.149) 

and denote the covariance of the estimate error by 

E B;(k) GT(k) ] = P(k) (2.1-20) 

If R is symmetric so is H and 

E (ETHG]==trfPH) 
u I x(O) 

Then, the optimal cost function is written 

(2.1-21) 

1 
-T 

JK(X(k)) = Ax(k) + dl(k) + R-l (k + 1) 5 (k f 1) 
J 

L- 

- -1 
R(k + 1) - R(k + 1) B 

1 
Q + BT R B 

J 
BT R(k + 1) 

1 
Ax(k) + dl(k) + R-l (k + 1) 5 (k + 1) 

3 
+ e(k + 1) 

- cT(k f 1) R-l <(k + 1) + tr [I' rT R(k + 1) )+ tr (P H) 

(2.1-22) 

Comparison of (2.1-22) to the assumed form for J reveals 

the following recursive relationships 
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R(k I- 1) = S(k + 1) + F(k + 1) 

1 

- -1 
K(k) = Q(k) -I- BT R(k + 1) B 

I 
BT R(k i- 1) A(k) 

F(k) = AT(k) R(k + 1) 
1 

A(k) - B K(k) 
3 

(2.1-23) 

and 

a(k) = R(k + 1) dl(k) + c(k + 1) 

- -1 
h(k) = Q(k) + BT R(k + 1) B 

1 
BT u(k) 

C(k) = AT(k) a(k) 1 - R(k + 1) B h(k) 
1 

(2.1-24) 

These relations completely specify the quantities K(k) and 

h(k) in the control law given by (2.1-15). The boundary 

conditions are obtained by applying the terminal condition 

of equation (2.1-8). 

F(N) = 0 

C(N) = 0 (2.1-25) 

With the recursive relations in hand it is easily verified 

that F is symmetric and positive definite if Q is positive 

definite or S is positive definite and B is of rank r, 

where r is the number of control inputs. Under these con- 

ditions the required matrix inversions may be carried out. 

This solves the control portion of the problem. But this 
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solution requires an estimate g(k) of the state which mini- 

mizes the quadratic form of equation (2.1-18). 

2.2 State Estimation 

The results of Section 2.1 depend upon choosing 

an estimate ^x which minimizes the quadratic form of equation 

(2.1-18). This problem has been solved by many workers. In 

the control literature Kalman 16, 17 is frequently referred 

to because of familiarity, however the result is actually 

from probability theory. In probability theory, the 

applicable lemma' is 

Lemma: Let p(x) be a symmetric positive definite 

convex function such that p(O) = 0 and let x(k) be a random 

vector whose probability distribution is symmetric about 

the mean. The estimate hX(k) of x(k) based upon the measure- 

ments y(O) to y(k) which minimizes E (p(G - x)) is the 

conditional expectation 

^x(W = E t x(k) I y(O) . o 0 y(k) 1 (2.24) 

Notice that the form of equation (2.1-18) meets the require- 

ments of the lemma, Suppose that the state and measurement 

noises are Gaussian. Then the conditional distribution is 

also Gaussian and the problem is identical to that 
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r 

considered by Kalman except for the deterministic measure- 

ment error which must 

The results 

relations. 

be subtracted out. 

are in the form of the recursive 

x(k + 11 k + 1) t x(k + 11 k) + Jl(k + 1) 
[ 

z(k + 1) 

- C x(k + 11 k) - d2(k) 
3 

i- T T -, -1 
$0 + 1) = P(k + 11 k) C L L L' + C' P(k + 11 k) C J 
P(k + 11 k + 1) = P(k + 11 k) - $(k + 1) CT P(k + 11 k) 

P(k t- 11 k) = A P(kI k) AT + P rT (2.2-2) 

The notation x(k + l/k + 1) has been used to denote the 

estimate of the state x(k + 1) based upon k + 1 measurements. 

The quantity P(k + l/k + 1) is the covariance of this 

estimate and corresponds to the matrix P of Section 2.1. 

From equation (2.1-s), the boundary conditions for the 

relationships given in (2.202)are 

x(0 1 0) = E(0) 

w I 0) = PC (2.2-3) 

This completes the control synthesis for the plant 

described by equations (2.1-1) and (2,102). A block diagram 
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of the complete system is shown in Figure 2-2. The only 

difference between this system and the optimal regulator 

problem as formulated by Joseph and Tou lies in the feed- 

forward term which arises as a result of the deterministic 

disturbances to the state vector. Computationally the gains 

K(k) and feedforward term are first computed backward in 

time using the set of recursive relations given by (2.1-23) 

and (2.1-24) with the boundary conditions (2.1-25). The 

estimator processes the available measurement during the 

control interval and produces new state estimates in 

accordance with the set of relations given by (2.2-2). The 

initial values for this set of recursive equations are given 

by equation (2.203)~ 
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Figure 2.2 Controller Block Diagram 
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SECTION III 

PARAMETER IDENTIFICATION 

Having developed the control law for plants with 

both deterministic and random disturbances plus noisy 

measurements the problem of identifying the parameters of 

the plant from these same measurements will be considered. 

Although there are many methods already in existence, 

attention will be restricted to those which do not require 

storage of the entire past measurement history. Specifi- 

cally, to those capable of on-line implementation. For 

background, the general requirements of identifiers are 

first analyzed. The general features of Least Squares 

techniques are then considered. With this development two 

methods of identification are analyzed, both of which also 

generate the state estimates required by the control law of 

Section II. One of the two is shown to be superior and the 

manner in which the control is to be altered as a function 

of the new estimates is considered. 

3.1 Identification from Noiseless Measurements 

As a preliminary exercise it is instructive to 

analyze the results obtainable under the assumption that 

the measurements of the system are perfect. As the simplest 
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case, let the plant be described by a linear, unforced 

difference equation of order n. 

x(k -t= 1) = Ax(k) (3.1-1) 

If the matrix 

X(k) = 
1 

x(k + n - 1) . . . x(k) 
J 

(3.1-2) 

is defined then, under the assumption that A is constant 

over the interval Ek, k + n] , the parameter matrix is 

given by 

A= X(k + 1) X-l (W (3.1-3) 

provided the inverse exists. But the matrix X is simply 

the Wronskian of the system. Therefore the inverse exists, 

provided all modes of the system are excited. That this 

should be so seems obvious, intuitively. Notice that the 

method of identification requires a complete state measure- 

ment at each point. 

The next case which arises naturally is the forced 

linear system 

x(k + 1) = Ax(k) + Bm(k) (3.1-4) 

with the control input m(k) having rank r. In line with 

the philosophy of equation (3.1-2) the matrix quantities 
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M(k) = 
1 

m(k -t- n + r - 1) . . . m(k) 
J 

, 

X(k) = 
1 

x(k + n + r - 1) . . . x(k) 
J 

(3.1-5) 

are defined. Then by partitioning of matrices, equation 

(3,104) may be used to obtain A and B according to the 

equation 

1 J A'B- 
I 

= X(k + 1) (3.1-6) 

The result again depends upon the existence of an inverse. 

This time however it is seen that a necessary condition for 

the inverse to exist is that the m(k)'s not be a linear 

combination of the x(k)'s over the interval. Thus if a 

controller of the form 

m(k) = - Kx(k) (3.1-7) 

is used, then for constant gains identification is not 

possible. This does not mean that if K is a function of 

time, identification is not possible. Careful reflection 

will show that this result also is not surprising, since 

substitution of (3.1-7) into (3.1-4) yields the unforced 

case of (3,101) where 

x(k + 1) = i-A - BK] x(k) (3.1-8) 
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so that, although the matrix LA - BKI is identifiable 

it is not possible to find A and B separately. It is also 

concluded from this case that the mode excitation require- 

ment is still present when equation (3.1-7) applies. When 

the control is not linear, or the gain matrix is time vary- 

ing, it can be shown 9 that the necessary and sufficient 

conditions for the system of equation (3.1-4) to be iden- 

tifiable are that the system be completely controllable and 

not be a linear combination of the x(k) in the sense 

discussed above. 

Analogous work can be carried out for continuous 

systems. The essential step in this case is to characterize 

the continuous time measurements by algebraic quantities. 

For instance, analogous to (3.1-4) the continuous plant is 

dx - = Ax(t) + Bm(t) dt (3.1-9) 

or 

t t x(t) - x(0) = A J X(T) d7 + B / m(T) dT (3.140) 
0 0 

By defining the quantities 

/ 

t 

/ 

t 
X(T) d+c = z(t), m(T) dT = u(t) 

0 0 
(3.141) 

equation (3.1-11) is reduced to an algebraic equation. By 
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taking enough different intervals a suitable set of linearly 

independent equations is obtained as before. 

Bather than pursue the problems associated with 

the identification of systems characterized by (3.1-4) the 

question of identification when a complete state measurement 

is not available will be considered. In general, for a 

linear discrete system, the plant equation has the form 

x(k + 1) = Ax(k) + Bm(k) 

y(k) = Cx(k) (3.1-12) 

An iwnediate problem arises if none of the three matrices 

A, B and C are known. Essentially the system gain can be 

distributed between B and C in any fashion and the same 

transient response from m(k) to y(k) results. Specifically, 

suppose that M is any non-singular square matrix. Then 

define a new state variable 

x*(k) = Mx(k) 

Equation (3.1-12) may be written as 

(3.1-13) 

x*(k + 1) = M A M-1 x*(k) + M B m(k) 

y(k) = C M-l x* (k) (3.1-14) 

There is no method of discerning equation (3.1-14) from 

(3.1-12) by observations of m(k) and y(k), For the time 
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being this problem will be put aside by assuming that C is 

knoy and the identification problem consists of obtaining 

A and B from observations of m(k) and y(k). 

Another conclusion which may be drawn from the 

above is that perhaps the matrix formulation is not the 

best way of approaching the identification problem. For 

instance suppose a single input, single output system is 

under discussion. The system is equally well described by 

the nth order difference equation 

N N-l 

2 ai y(k + i) = c bj m(k + j) (3.145) 
i== 0 j= 0 

Either one of the other coefficients is known, or aN may 

be set to unity without loss of generality. This is 

analogous to setting 

C = 
1 

lOO,,.O 
I 

(3.146) 

in the matrix formulation. Equation (3.1-15) places in 

evidence the fact that only 2N coefficients need be iden- 

tified. The discrepancy can be explained by noting that for 

such a system one matrix formulation is 
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xl& + 1) 

. 

. 

. 

x (k + 1) 
J . 

I 

I 

Ol 

--mm- ----m 

L -a 0 -aN-l 

B x1(k) . 

4 - 
. . xN(k) 

y(k) = L 1000.. 

+ 

I m 

bl 

. 

. 

. 

.bNB 

m(k) 

(3.147) 

That is, all of the elements of the A matrix save the last 

row are specified by the fact that the system is single 

input, single output. 

Conditions for the identification of (3.1-15) may 

now be easily found. Rewrite it, solving for y(k + N) and 

re-index the time so that 

N -1 

y(k + 1) = c 
j= 0 

bj m(k -t- j - N + 1) 

N- 1 

-1 ai y(k -I- i - N + 1) (3.148) 
i 0 = 

or 
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y(k + 1) = zT(k) a = 1 y(k), . . . y(k - N + l), 
L 

m(k), . O . m(k - N + 1) 
1 

-a 
N-l 

. 

. , 

. 
-a 0 

bN - 1 

0 
0 
0 

bO (3.1-19) 

In equation (3.1-19) the unknown parameters are all con- 

tained in the vector a, and the past measurement history 

in z(k). If 2N measurements are taken then the total set 

of measurements and their relations to the parameter 

vector o! may be written as 

or 

Therefore 

Y(k) l l l y(k-N+l), m(k) . . e m(k-N+l) 
D 
. 

y(k +2N-1)... y(k ; N), m(kt-2N-l)...m(k+N) 
. J 

(3,1-20) 

Y =Za 

a=2 -1 
Y (3.1-21) 
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and the identifiability of this system rests upon the 

existence of the inverse in (3.1-21). However the matrix 

2 is seen to consist of the forced responses of the system. 

Clearly, a necessary condition for the inverse to exist 

requires that the control m(k) not be a constant linear 

function of y over the identification interval. It can be 

shownl' that all single input single output systems are 

reducible to the form given in equation (3.1-15) so that 

these results hold generally, 

Leel' used this formulation as the starting point 

for applying Least Squares filtering. However, it is not 

necessary to restrict the discussion to single input, 

single output systems, just as Least Squares filtering is 

not restricted to scalar measurements. Consider again the 

vector system of equations (3.1-12). In terms of z transfer 

functions they may be written 

y(z) = C [Z I - A] -1 B m(z) (301-22) 

The inverse in (3.1-22) always exists. Equation (3,1-22) 

represents the z transform of a set of difference equations. 

It is equivalent to the set of equations 

c a . . 
i,j iJ 

c 'j= ik bik mk (3.1-23) 
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Since the original matrix equation was nth order there 

can effectively be only n a coefficients which are non- 

zero in the set (3.1-23). Assuming, as before, that the 

C matrix is known, then knowing the a coefficients is 

equivalent to knowing the A matrix. As a result only the 

B matrix is unknown. This has at most n x r coefficients, 

where r is the number of inputs. Consequently an nth 

order system with r inputs is specified at the minimum by 

n(r + 1) coefficients. 

The above discussion points out some salient 

features of the identification problem. Even with complete 

state measurement all modes of the system must be excited. 

Moreover, if the system is being controlled during the 

identification interval the controller cannot be composed 

of constant feedback gains. In the event that the states 

are not observable directly, it is further necessary that 

the system be observable. This requirement is also seen 

to be a natural consequence since a non-observable mode 

could not, by definition, be measured. 

All of the preceding material has assumed constant 

coefficients and precise measurements. Suppose one of the 

identification techniques is applied twice, at two different 

time intervals, and the results differ. Which one is 
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right? Is it the result of a time variation of the a's or 

the result of measurement noise? Or possibly the plant is 

only approximated by linear differential equations. Con- 

siderations such as these lead naturally to some method of 

continual observation and updating of the identification. 

If one of the methods just discussed is to be employed then 

some method must be found to accommodate the new data and 

include it with the old. But this is precisely the problem 

for which the classical ItLeast Squares estimation" is used. 

Hence the next section is devoted to a discussion of this 

technique for identifying systems. 

3,2 Least Squares Estimation 

For the sake of unity in the presentation, this 

Section is included although the results are identical to 

those of Section 2.2. For later convenience, those results 

will now be derived using a maximum likelihood approach. 

The general problem to be considered is as follows. Given 

a dynamic system 

x(k + 1) = Ax (k) -t- Bm(k) f r u(k) (3.2-l) 

and y(k) = C x(k) + L v(k) 

where only the y's are measurable, and they are corrupted 

by noise, v(k), The state x(k) is also probabilistic due 
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to the random input signal u(k). The pertinent 

statistics of u and v are 

E [u(k)) = 0 E (v(k)} = 0 

E (u(i) UT(j)] = 6ij ; E [v(i) VT(j)] = dij 

E {v(i) UT(j)) = 0 (3.2-2) 

("ij 
is the Kronecker delta). 

This is the discrete analog of the problem con- 

sidered by Bryson and Frazier 5 . Suppose for the moment 

that x is not a state variable, but a constant vector. 

Then the problem reduces to making successive measurements. 

z(k) = C x(k) i- L v(k) (3.2-3) 

and fitting an estimate ^x to these measurements. It is 

not necessary to restrict the discussion to scalar measure- 

ments, so that z(k) may be a vector, As a notational con- 

venience the estimate of x based upon i measurements will 

be written fi . Using a maximum likelihood approach the 

likelihood function 

uz, xl = P(zlx) 

is set up with z denoting the complete set of measurements 

as before. Since (3.2-3) is linear the likelihood function 
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may be manipulated using Bayes Rule so that 

uz, xl = P(zlx) = p(x) p(z, = HL 4 dx) = p(L v) 
P(X) 

(3.2-4) 

The notation p(L v),refers to the density function of the 

random variable L v. Now if v is Gaussian so is y and 

therefore the likelihood function is 

L(z, x) = 
1 

kr 
(270 2 I LLTl 

k 
exp C (zi - cx)T (LLT)'l ('i - Cx) 1 (3.2-5) 

i= 1 

(r denotes the rank of z, the measurement). Maximizing 

the likelihood function with respect to x is equivalent to 

minimizing the exponent. The sum may be written as the 

vector equation 

(3.2-6) 

So that the maximum likelihood estimate is that x which 

minimizes 

J =- 2' (Z(k)- ~,x)~(LL~)-~ Z(k)- ekX) (302-7) 
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- 

aJ 
The minimum is found, by setting ax = 0, to be 

1 
- -1 

h 
Xk= %c T (UT? e,J t$T(LLT)-l Z(k) (3.2-8) 

The estimate :k is unbiased, since 

E [Gk-j = [S,T (LLT)-1 Sk] -' I$~ (LLT)-1 E [Z(k)-j 

and 
E ez(k)] = 4 x (3.2- 9 ) 

The covariance of the estimate is easily shown to be 

covsi = k 1 
EkT (LLT)-l 4k) -1 (3.2- 10) 

The question of one additional measurement 

z(k -+- 1) and its effect upon the estimate is now considered. 

The new estimate, denoted ^xk + 1 , is immediately written 

down by inspection of equation (3.2-8) as 

h 

Xk+l= 1 
-e,T+ 1 tLLT)-l 4, + 1) 

ckT+ 1 (LLT) -' Z(k + 1) (3.241) 

But by noting that Sk + 1 and Z(k + 1) can be partitioned 

into 
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, Z(k + 1) = (3.2-12) 

Equation (3.2-11) may then be written as 

1 
- -1 A 

Xk+l= 4k T (LLT)Ol 5, + CT(LLT)-l CJ 

1 SkT (LLT)'l Z(k) + CT(LLT)-1 z(k + 1) 
1 

(3.2-13) 

Now the inverse term is, by comparison to (3.2-lo), the 

covariance of the estimate ;;k + 1 . At this point a 

convenient matrix relation must be introduced. 

Lemma: If the inverse of a nonsingular matrix A 

is given by 

A-l = B-l + C(LLT)'l CT (3.2-14) 

then the matrix A itself is equal to 

1 
- -1 

A=B- BC C B CT + LLT 
J 

CT B (302-15) 

provided that the inverse of B and LLT exist. 

Proof: The inverse of the matrix A is that matrix 

for which 

AA-l= A-l A = I (302-16) 
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By direct matrix multiplication of equations (3.2-14) and 

(3.2-15) in either order equation (3.2-16) is obtained. 

Using these identities and denoting the co- 

variance of ^x k by Pk equation (3.2-13) may be shown to 

become 

h 

Xk+l= %c + Pk c T 
1 

- -1 - 

c Pk CT,LLT 
1 1 

z(k+l) - C Gk 
J 

(3.2-17) 

and the covariance of the new estimate is related to that 

of the old estimate by the relation 

1 
- -1 

Pk + I = Pk - Pk c T c Pk CT + LLT 
1 ' 'k 

(3.2-18) 

These equations show how, given an unbiased 

estimate f; and the covariance of that estimate, a new 

measurement with a known error (Lv) is incorporated to 

update the estimate and reduce the covariance. Indeed the 

same result can be achieved more rapidly from this view- 

point using maximum likelihood, Recall that the likelihood 

function was seen to be 

Lcz, x) = p(z(x) = p(v) = P(v,> P(9) . 0 l Pb,) 

(3.249) 
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But the errors of all terms save the last are incorporated 

in the estimate A% and the covariance Pk , therefore the 

maximum likelihood is equivalently obtained by minimizing 

the functional 

-I- 1 z(k+l)- CGk+ 1 
I 

T(LL) T-l - 
1 

z(k+l- CGk+l 
J) 

(3.2-20) 

with respect to +C+1* The result by ordinary calculus 

and the matrix inversion lemma is 

A 

T 1 
- -1 - h 

Xk+ 1 = Xk + Pk c c Pk CT+LLT J 1 z(k+l) - C xk 
J 

(3.2-21) 

If Gk is un unbiased estimator then so is Gk + 1 since 

E f *\ + ,I = 

1 pk Et ^xk) 

Finally, the covariance 

I P;;l + CT(LLT)-l 
- -1 

4 
L -- 2 

+ CT(LLT) 
-1 - 

Efx) 
I 

(3.2-22) 

of the new estimate is found by 

substitution into (3.2-20) and use of the inversion lemma 

to be 
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1 
- -1 

'k + 1 = 'k - 'k ' T c Pk CT + LLT 
J ' 'k 

(3.2-23) 

which is exactly the same as the previous result. 

With this result the original problem posed in 

equations (3.2-l) and (3.2-2) can be easily analyzed, 

Suppose after some time an estimate ^x of the state at time 

k is obtained based upon observations up to and including 

time k. This estimate is denoted ^x(klk) and it is further 

assumed that the covariance of the estimate is known and 

denoted by P(klk). Now, one time interval later, the true 

state has changed from x(k) to x(k + 1) according to 

equation (3.2-l). The best prediction of x(k + 1) based 

upon the measurements up to time k is the linear extra- 

polation 

%(k i- Ilk) = A x(klk) + B m(k) (302-24) 

This result has been shown by many authors dating back to 

Wiener28. The estimate is unbiased if ^x(klk) is unbiased 

and the covariance is given by the propagation of uncer- 

tainty in a linear dynamic system. 

cov( ;(k + Ilk)) = A P(klk) AT + IYT = P(k + Ilk) 

(3.2-25) 
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But now the problem is reduced to the one previously dis- 

cussed, in that an old estimate hX(k + Ilk) of the state 

x(k + 1) and its covariance is known from equations 

(3.2-24) and (3.2-25). A new measurement z(k + 1) is made 

and equations (3.2-21) and (3.2-23) prescribe the manner 

in which the new measurement alters the estimate and the 

covariance, Using the notation P(k + Ilk + 1) for the new 

covariance and ^x(k + 1Jk + 1) for the new estimate (3.2-21) 

and (3.2-23) may be written as 

^x(k+l~k+l)="x(k+l~k)+~(k+l)[z(k+l)-C;(k + Ilk)] 

P(k + l(k + 1) = P(k + Ilk) - +(k + 1) C P(k + ilk) 

+(k + 1) = P(k + Ilk) CT LC P(k + l(k) CT + LLT] -1 

(3.2-26) 

The two quantities P(k + Ilk) and "x(k + Ilk) being given 

by the previous two equations. These are exactly the 

results given in Section 2.2. On the other hand this 

derivation has a certain appeal in that it places in 

evidence the reason for the structure of the equations 

whereas Kalman's use of orthogonal projections tends to 

obscure the physical reasoning behind the equations. 

42 



3.3 Identification Using Least Squares 

It would appear from the material just developed 

that the problem is solved. All discrete systems may be 

expressed as a set of difference equations. For simplicity, 

the single input, single output system will be discussed. 

As shown in Section 3.1 the system difference equation may 

be written in the form 

y(k + 1) = YTa = c ai y(k - i) + 2 bj m(k - j) 

(3.3-l) 

The vector y is then seen to play the role of the matrix C 

in the least squares development and by comparison to 

equation (3.2-3) the coincidence is immediately seen. The 

question which must be answered now is: by what mechanism 

does the noise enter into the system? Lee restricted himself 

to input noise for reasons which will soon be apparent. If 

the noise is all at the input then the form of the state 

equation is 

x(k + 1) = Ax (k) + Bm (k) + r u(k) 

y(k) = Cx(k) (3.3-2) 

where 
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J 

The first thing to be noticed is that it will be necessary 

to know the parameters in the vector r . This is equivalent 

to knowing the covariance of the noise. By a standard 

transformation7 the matrix equation (3.3-2) may be written 

in the form of a first order difference equation 

y(k + N) - aN y(k + N - 1) - o . . - al y(k) 

= bk m(k + N - 1) + . e . + b; m(k) 

+ 7; u(k + N - 1) -I-. 0 . + 7; u(k) 

(3.3-3) 

The b and y coefficients have been primed to indicate that 

they are not the same as the coefficients of the vectors B 

and r but are linearly related to them and the matrix A. 

Now, equation (3.3-3) appears to be in the proper form for 

the application of the previously developed Least Squares 

technique if the y.u. 
=J 

terms are lumped together as one 

total disturbance so that equation (3.3-3) is written 



N-l - 
y(k + 1) = 

= 1 i=O 
ai+l y(k - i) + bi +l m(k - i)] + dist. 

=: YT(k) a + dist. (3.3-4) 

However, although equation (3.3-4) is of the same form as, 

say (3.2-3), there is one difference. The disturbance term 

is correlated whereas in the Least Squares work this was 

assumed not to be the case. To see this, write out the 

disturbance at two successive times 

dist (k) = Y; u(k) + Y;..~ u(k - 1) +. . .f y; u(k -N-f- 1) 

dist (k-t-l)= 7: u(k +l) + yi-1 u(k) + . . .+ -y; u(k -N+2) 

(3.3-5) 

Hence 

E W.st: (W dist (k +I))= (yN yNol + . . . + y2 yl) E {u2) 

(303-6) 

Therefore the Least Squares estimation is not 

optimal for this case. There are two ways around this 

dilemma. The first method is to return to the formulation 

given by (3.3-2). If no updating is made until N outputs 

are obtained then essentially a complete state measurement 

has been made and (3.3-4) may be rewritten as 
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x(k + 1) = 

y(k + 1) 
. 
. 

y(k i- N) 
L . 

u + r u(k) 

(3.3-7) 

That is, an entire measurement of the state at time k is 

possible, but to obtain it the outputs must be measured 

over an interval of N samples. After the N sample, wait a 

new measurement of the complete state that obtained at 

time k is available. The disturbance u in this case is not 

correlated since it may be treated as a vector. The other 

method of analytically handling this difficulty is to adjoin 

additional states to the system description which account for 

the correlated noise. This method adds appreciably to the 

system complexity. 

Rather than pursue this topic, a second and more 

serious restriction will now be considered. Suppose that 

the measurements of the output are not precise due to additive 

noise. That is the actual measurements z(k) are related to 

the state by 

z(k) =I C x(k) + Lv(k) (3.3-8) 

where v(k) is a white Gaussian random noise of zero mean and 
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unit covariance. Then, although equation (3.3-4) has the 

appearance of being in the proper form for a Least Squares 

technique, it is not. The measurement matrix yT is itself 

composed of random variables since each y is in fact 

yT(k> = r z(k), z(k - 1) . . . z(k - N+l), 
L 

m(k) . . . m(k - N + 1) 
J 

(3.3-9) 

and the z's are as given by equation (3.3-8). As a result 

there can be no guarantee of covergence to the correct 

result, even when the parameter vector a is time invariant. 

A heuristic method of avoiding this problem is to 

regard the unknown parameters as being themselves states 

which are driven by noise. This prevents the estimated 

covariance from decreasing monotonically to zero as evidenced 

by (3.2-25) and (3.2-26). Alternatively, recall that the 

control for a system with noisy measurements requires a 

Wiener-Kalman filter to estimate the state given the 

measurement. If this estimate represents the "best" estimate 

of the state then it could be used in place of the noisy 

measurements in estimating the parameters. The rub of 

course is that the state estimate is made assuming the 

parameters are known as evidenced by (3.2-24) which gives 
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the predicted state based upon the old state estimate and 

the parameters. However, it is a straightforward step to 

reason that since both a state and a parameter estimate are 

needed they be done as a two step recursive process. 

1. Estimate the state using old parameters. 

2. Estimate the new parameters using the new 

state estimate. 

3. Repeat 1 and 2 with new data. 

The state estimator equations are as given by 

(2.202)) except that the A, B and C matrices must be 

regarded as estimates of the parameters rather than the 

parameters themselves. It is also necessary to exercise 

care about the form of the difference equations in each 

case. For the Least Squares technique a set of first order 

difference equations is used. However, for the parameter 

identification a difference equation of the type typified 

by (3.3-l) is required. A suitable transformation is 

available for the single input, single output case which 

19 reconciles the two representations . Essentially, the A 

matrix must be put in the form of (3.3-2). Even then the 

correspondence is not complete unless only one element of 

the B matrix is nonzero. Otherwise the elements b' of 
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equation (3.3-3) are 

matrix by the set of 

related to the elements of the B 

7 equations . 

b; - 1 = b2 - aN bl (3.3-10) 

I 
bl = bN - aN bN - 1 - o . . - a2 bl 

Equation (3.3-10) shows that the transformation involves 

the a's, some or all of which may be estimates. Alter- 

natively, depending upon the mechanism by which noise is 

regarded as forcing the system, the estimate z(k + l(k) 

could be generated using (3.3-3) rather than (3,3-2), In 

either event, the important point is that there exists a 

disparity in the two formulations required respectively by 

the state identifier and the parameter identifier. 

In the case of multiple outputs the problem is 

even more aggravated. For two outputs a transformation of 

the type given by (3.3-10) cannot be written unless they are 

essentially position and rate type measurements of the same 

system. Moreover, what of the control which must be updated 

using the new parameter estimates? If optimal control is to 

49 



be used then the weighting matrices Q and S which are used 

are based upon a specific definition of the state variables. 

Therefore, a second transformation may well be required 

whenever the control is updated. One possible method would 

be to transform Q and S, based upon the nominal or g priori 

estimates of the parameters, to the state definition used by 

the estimator and use these values for Q and S. 

These are primarily computational difficulties, in 

the use of the proposed two step procedure. To summarize, 

assume a single input-single output system. It is further 

assumed that the state description is also that used in 

formulating the control weighting matrices Q and S. The 

plant is then described by the difference equation 

y(k + N) - aN y(k + N - 1) . . . - al y(k) 

= b& m(k + N - 1) . . . + b; m(k) (3.341) 

The measurable output z(k) is corrupted by additive noise 

z(k) = y(k) -I- L v(k) (3.342) 

where v(k) is a white sequence of zero mean and unit 

variance. Noise is present in the states as described by 

the equivalent matrix formulation of equation (3.3-2). 
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The parameters bl to bN in the B vector are related to the 

parameters bi to b; in equation (3.3-11) according to the 

transformation set forth by (3.3-10). The equivalent noise 

input gain of u(k) into equation (3.3-11) is computed using 

the same set of relations (3.3-10) but now the matrix P 

plays the role of the B matrix. As was remarked previously 

if the formulation of equation (3.3-11) is used then the 

input noise is correlated. On the other hand, to avoid 

this requires updating the parameters only every N samples. 

In either event, the state estimate is made from 

^x(k + 1Jk + 1) = ;(k+l(k) + +,(k+l) 
1 

z(k+l)-C^x(k+lIk) 
J 

^x(k + Ilk) = i(k) G(klk) + ^B(k) m(k) 

qx(k + 1) = Px(k -t- Ilk) CT 
1 

C Px(k +ljk) CT + LLT 

Px(k + Ilk + l)= P,(k -I- l(k) - qx(k +l) C Px(k + 1Jk) 

Px(k + Wd = i(k) Px(klk) iT(k) + rx rxT 

(3.3-13) 

The notation i and ^B has been employed to denote the fact 

that the parameters used are estimates, the true parameters 

not being known. The covariances are noted as belonging to 

the state estimate through the use of a subscripted x. The 
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parameters are estimated via Least Squares smoothing of 

equation (3.3-11). Variations in the parameters with time 

may be accounted for by assuming a difference equation for 

the parameters of the form 

ai(k + 1) = ai(k) + Ypi u(k) (3.3-14) 

If the correlations in the input noise are ignored then the 

parameters are estimated by the equations 

G(k+l)k+l) = G(k) + $,(k+l) 
1 

z(k+l)- yT(k);(k) 

+p(k+l)= Pp(k+Wd y(k) 1 yT&> PP(k +W) r(k) 

-l-L L T - -1 

P P J 

Pp(k+llk+l) = Pp(k+llk) - +,(k+l) yT Pp(k+llk) 

Pp’k +1 lk) = Pp(kIk) + Pp rp' (3.3-15) 

and the vectors Y(k) and u(k) are 

UT(k) = 
C 

^x(k) . . . hX(k-N+l), m(k) .*. m(k-N+l) 
I 

(3.3-16) 

hk) = ^aN(k)... 
1 

$1(k), g;(k) .0. "; (k) 

(3.3-17) 
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In the event that the noise correlation is taken into 

account so that parameter updating is performed only once 

every N samples the parameter estimate is given by 

z(k + 1) = yT(k) + L u 
Pk 

z(k + N - 1) = yT(k + N) + L u p k+N 

(3.348) 

The term L u 
Pk 

represents the complete sum of the measure- 

ment noise L v(k + 1) and the input noise over the previous 

interval so that it may be written 

Lu 
Pk 

= L v(k + 1) -I- y; u(k) + y;-lu(k - 1) 

+ = + y1 u(k - N) (3,349) 

The y's being those referred to in equation (3.3-3) and 

related to the r matrix by the customary transformation. 

This then is the sequential estimation of the 

parameters and states. It is well to recall that this 

method was advanced because when Least Squares techniques 

were considered for parameter estimation it was noted that 

the measurement matrix involved was itself noisy. Now how- 

ever, the use of the 2 and ^B notation shows that the same 

thing applies in the state estimation. The essential 

53 



difficulty of course is that the estimate, x(k + ilk), is 

dependent upon both the parameter and state estimates and 

these two are not independent. The sequential estimation 

scheme takes no account of the correlation between the 

state and the parameter estimate. 

3.4 Simultaneous Estimation 

The problem is now reduced to one of accounting 

for the mutual dependence of the estimated states and para- 

meters. A method frequently suggested in the literature is 

to adjoin the parameters to the system of state equations, 

regarding the parameters as added state variables. However, 

this effectively replaces the linear plant description with 

a nonlinear one since when the parameters are treated as 

additional states the terms of the old state equations are 

composed of products of the parameters (new states) and the 

actual states, Although nonlinear estimation is not un- 

known, it usually involves retaining the entire measurement 

history and fitting the function to that. On the other 

hand, if the identification is to be done "on line" then 

such a method is clearly undesirable. Indeed, the attractive 

feature of the Least Squares techniques which have been con- 

sidered so far is the recursive form of the computations. 
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That is, the entire past is contained in the present 

estimate and present covariance. What is sought then is a 

method with the computational simplicity of Least Squares 

smoothing which can handle nonlinear systems. 

To be specific consider the nonlinear discrete 

system 

x(k + 1) = f(x(k), m(k), u(k), k) (3.4-l) 

The new state x(k f 1) is a function of the old state, a 

deterministic Input and a disturbance input u(k), repre- 

senting all statistical inputs. The mean of u is taken as 

zero without loss of generality. The problem is to estimate 

the state based upon noisy measurements of the system. The 

measurements are assumed to be linear functions of the 

states. In equation form 

z(k) = C(k) x(k) + L(k) v(k) (3.4-2) 

The noise vector v(k) is assumed to be white Gaussian with 

mean zero and unit variance. All matrices may vary in time, 

as denoted by their arguments. 

Suppose that at time k, by some method or other, 

an estimate of the state were available together with the 

variance of this estimate. Denote the estimate ^x(kJk) and 

the covariance matrix P(k(k), indicating the estimate is 
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based upon all measurements up to the present time. The 

error between the estimate and the actual state is 

&(klk) = x(k) - ^x(k)k) (3.4-3) 

Now, one sample time later the state evolves in accordance 

with equation (3.4-l). Equation (3.4-l) is expanded in a 

Taylor Series about z(k)k) and u(k) = 0. 

x(k + 1) = f(hX, m, u, k) + $$ 

af 
+ s u= o u(k) + . 

I * 6%k IQ 
X 

. . (3.4-4) 

But, the estimate of x(k + 1) conditioned on measurements 

up to time k must be 

^x(k + Ilk) = m(k), 0, k 
> 

(3.4-5) 

Thus the error at time k + 1 conditioned upon k measurements 

must be 

&(k + Ilk) = x(k + 1) - ^x(k + Ilk) (3.4-6) 

Combining equations (3.4-4) through (3.4-6) gives the 

equation for the error as 

&(k + Ilk)+ 
I 

&(klk)+ g 
%k Ik) I 

u(k) + . . . 
U=O 

(3.4-7) 
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If the higher order terms of (3.4-7) are ignored then a 

linear equation is obtained for the error propagation from 

time k to time k + 1. The covariance of &(k + Ilk) is 

then easily found in exactly the same manner as in Section 

3.2 and is 

P(k + lik< = 

(3.4-8) 

Now, a new measurement is made of the actual state x(k -I- 1). 

But by the methods developed in Section 3.2 it is a simple 

matter to combine these two estimates of x(k + l), The old 

estimate is hX(k + Ilk). The covariance of this estimate is 

given by equation (3.4-8). The new estimate, based upon 

the new measurement, is 

;;(k+lJk+l)=^x(k+llk)+ $(k+l)[z(k+l)-&(k+lJk)) 

The correction matrix 

recursive equations 

L -I 

(3.4-9) 

+(k + 1) is given, as usual, by the 

The covariance of the new estimate is 
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P(k + ljk + 1) = P(k + Ilk) - $(k + 1) C P(k + Ilk) 

(3.4-11) 

Equations (3.4-9) through (3.4-11) then show how a new 

estimate and its covariance are obtained from the old 

estimate and covariance. Equation (3.4-5) prescribes how 

the conditional estimate of x(k + 1) is made and (3.4-8) 

gives its covariance. These equations therefore constitute 

the desired estimator for nonlinear systems using the 

recursive computational techniques of Least Squares 

filtering. 

The validity of the estimation procedure above 

depends of course upon the effect of the higher order terms 

in equation (3.4-7) which were conveniently dropped. By 

restricting the discussion to the identification of linear 

systems some general results may be obtained. Consider 

then the familiar linear system of Nth order 

x(k + 1) = A(k) x(k) + B(k) m(k) + r(k) u(k) 

z(k) = C(k) x(k) + L(k) v(k) (3.4-12) 

It is assumed that certain, and possibly all, of the para- 

meters in the A matrix are to be estimated. An exactly 

similar procedure may be used to estimate unknown means in 

the disturbance u(k) or terms in the matrix B, These 
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unknown parameters shall be regarded as additional states. 

To account for possible unknown time variations they will 

be regarded as having dynamical equations of the form 

ai(k + 1) = ai + Ypi u,(k) (3.4-13) 

The up(k) representing a zero mean unit variance noise. If 

some a priori knowledge of the manner in which the parameters 

are varying in time is available this may be included by 

rewriting equation (3,4-13) in the form 

ai(k + 1) = w(k) ai + 1 [ - w(k)] zi(k c 1) 

+Y u W Pi P 
(3.4-14) 

The term Vi(k + 1) represents an expected value or nominal 

value for the parameter and w(k) is a weighting factor be- 

tween the prediction and the nominal parameter. Equation 

(3.4-14) equivalently states that the parameters drift back 

to the nominal unless driven off by the fictitious noise 

which provides the required statistical representation for 

the parameter variations. Symbolically, the set of equations 

(3.4-14) may be written as a matrix equation. 

a(k+l) = W(k) a(k)+ [I-W(k)]?i(k +l) + r u,(k) 

(3.4-15) 
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The matrix w is diagonal and composed of the elements 

w (W The transition equation (3.4-15) is now added on to 

the transition equation in (3.4-12) giving an augmented 

system equation 

xA(k +l)= AA(k) xA(k) f BA(k) mA(k) + rA(k) u,(k) 

z(k) = CA(k) XA(k) + L v(k) 

where the matrices are 

AA= [: ;],BA= [-I-;-;], PA= I:, 

CA= 1 c, ’ 0 J 

and the state and input vectors are 

(3.4-16) 

It should be remembered that certain of the coefficients 

in the A matrix of equation (3.4-16) are the added states 

and therefore, although the equation appears linear, it is 

not. 
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To see more clearly what is going on, consider 

a representative scalar equation from (3.4-16). 

xj(k + 1) = aij xl(k) + . . . + aNj xN(k) + bj m(k) 

(3.4-17) 

Then the first order Taylor Series expansion of (3.4-17) is 

axj(k + 1) = ^a.. 6x1(k) -I- . . . + : 
1J 

Nj 6xN(k) 

+ Gl(k) daij + . . . -I- &N(k) 6a 
Nj 

(3.4-18) 

Hence the. general form of the linear expansion is 

and similarly 

af 
aU u= 0 

= r, 

(3.4-19) 

(3.4-20) 

Now, because the linear system with augmented states is 

bilinear, all' of the higher order terms beyond second are 

identically zero. The only second 

in the expansion are crossproducts 

Consider a second order system 

x2(k + 1) = al xl(k) + 

order terms which arise 

of the form ba bx . 

a2 x2(k) (3.4-21) 
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The complete expansion is 

6x2(k + 1) = ^a1 6x1 + ^a2 6x2 + :l dal + ;2 *a2 

+ 6al bxl + Ba2 6x2 (3.4-22) 

Equation (3.4-22) places in evidence the fact that 

sufficient conditions for the second order terms to be 

small are 

6x((^x,ba((Z (3.4-23) 

But this is equivalent to asking for small percentage errors 

in the estimates. Thus, whenever the estimates at time k 

are r'good18 the above procedure can accurately track the 

state to time k + 1, 

It is now evident from inspection of (3.4-9) and 

(3.4-10) why this system is to be preferred over the 

sequential estimation technique discussed in the previous 

Section. The matrix P(k -t- l(k) of the covariance specifi- 

cally accounts for the correlation between the states and 

the parameters. In fact, from the partitioned matrix for- 

mulation of equation (3.4-19) it is clear that the sequential 

estimation method not only partitioned the matrices as shown 

in (3.4-16) but also assumed the covariance to be in the 

form 
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P(kJk) = I -Px(klk)l 0 
I -1.011.1. 

L 0 ; Pp(k ik) 
(3.4-24) 

Specifically, the two step procedure ignores the correlation 

between the state and parameter estimates. An added advan- 

tage of this technique is the simultaneous generation of 

the state and parameter estimates without the necessity for 

linear transformations and two disparate state representations. 

Moreover, it is not dependent upon a specific form of the A 

matrix as was the sequential estimation scheme. Thus the 

form used for the state representation should be the same as 

that used in computing the control thus avoiding all state 

transformations. 

Rather than give examples of the use of this 

technique here it Will be illustrated through application to 

the problem of controlling a large flexible launch vehicle 

which is discussed in Section IV. Although Section III has 

been discussing identification problems it is important that 

they be considered in conjunction with the control system 

and the method of synthesis used for the controller, Con- 

sequently the next section discusses briefly how the new 

parameter estimates might be used to alter the control loop. 
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3.5 Control Using New Parameter Estimates 

The rationale for employing optimal control tech- 

niques in SECTION II was their great generality. The price 

paid for this powerful tool is the celebrated two-point 

boundary value problem. For linear plants the problem is 

separable and the feedback gains may be computed from a 

difference equation. However, the difference equation runs 

backward in time having its initial conditions at the 

terminal point of the control interval. How then is the 

new parameter information to be used in altering or updating 

the control policy? The brute force approach would be to 

extrapolate the parameter estimates forward to the end of 

the control interval and recompute the entire control 

sequence back to the present time. As might be imagined, 

the computing effort would be formidable. Moreover, as the 

extrapolations went further and further from the present the 

extrapolated parameters might be far from nominal. In this 

case it is not clear what significance the words '"optimal 

feedback gains" would have. 

Another possibility which was considered was an 

attempt to derive Vtparameter sensitivity coefficients" for 

the nominal feedback gains as a function of the parameter 

changes. Using these, the new gains could be computed as 
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perturbations on the nominal gains based upon the parameter 

perturbations about the nominal. For single input, single 

output there are N gain coefficients while there are at most 

2N parameters involved. Thus it would appear that the 

sensitivities could be found as an N x 2N matrix of co- 

efficients which would map the coefficient differences ba 

into gain differences 6K . But the gains at time k are 

not only a function of the present values of the parameters 

but also their future values since they are the solution of 

a difference equation starting at the terminal time, Thus 

it is once again necessary to have the extrapolated values 

of the parameters available. Moreover, the change in the 

feedback gains at time k is a function of all the future 

off nominal parameters and therefore, except for the case 

of constant coefficients, a sensitivity term for each future 

parameter value must be included. Again the computational 

problem is simply out of the question. 

As a result of these considerations a compromise 

solution was reached. It was decided that instead of pre- 

computing and storing the nominal gain sequence based upon 

the nominal parameter estimates, the nominal Riccati matrix 

and disturbance vector would be computed and stored accord- 

ing to the equations developed in Section 2.1. Then, at 
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some time k, when new parameter estimates are obtained the 

gains for the next step would be canputed by using the 

nominal Riccati matrix one time point in the future and 

the estimated parameters. That is, the control at time k 

to make the transition to time k + 1 would be computed via 

m(k) = - f;(k) G(k) - ^h(k) (3.5-l) 

%k) = [Q(k) + ^BT + 1) + S(k + l)- g(k)) 
J 

-1 

BT - 
1 

P(k + 1) + S(k + 1) 
3 

d(k) + z(k + 1) (3.5-2) 

h 

K(k) = 
-1 

F(k + 1) + S(k + 

"BT(k) [S(k + 1) + F(k + (3.5-3) 

The notation F(k + 1), t(k -+ 1) indicates that these are the 

nominal Riccati Matrix, and disturbance vector. Notice that 

all other quantities used in equations (3.5-2) and (3.5-3), 

with the exception of the weighting matrices Q and S, are 

denoted as estimates made at time k. This specifically 

includes the deterministic disturbance, ^d(k), which can be 

estimated exactly like any other parameter. Indeed in the 

example which follows this is done. 
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What is the significance of this proposed compu- 

tational scheme? In essence these are the equations which 

would result if all parameters were found to return to 

their nominal value at the next time interval and then 

remain there for the duration of the control interval. 

Although there is no reason that they should be expected to 

do this, the computational simplicity is attractive. As a 

result this method was chosen to easily incorporate the 

new estimates into the control. 

The proposed system is now complete. It is seen 

to comprise two parts, The estimator and the controller. 

The estimator observes the inputs and outputs to the system 

and updates its estimate of both the system state and the 

system parameters. Based upon the altered parameters the 

new feedback gains are obtained in a one step computation 

using the precomputed nominal Riccati Matrix. Having 

obtained the gains, the control for the next step is com- 

puted as the matrix product of the gains and the states as 

expressed in (3.5-l). This completes the system analysis. 

This system has been called "adaptive" by the 

author based upon this last ability to alter the control in- 

put based essentially upon new performance information. 
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(Since the estimator makes a new estimate based upon new 

observations of the system). In the remainder of this work 

the proposed method will be applied to a problem of 

engineering significance and some difficulty. Used upon 

the experience gained in the solution of this problem 

remarks about its general utility, usefulness, etc. can be 

made. 
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SECTION IV 

CONTROL OF A.FLEXIBIE LAUNCH VEHICIE 

As an example of a problem of current interest, 

the control of a large flexible launch vehicle, of the 

Saturn type, was chosen. This section describes the per- 

tinent characteristics of the vehicle as abstracted from 

Reference 1. 

In overview, the problem may be stated as that of 

controlling the attitude of a large launch vehicle during 

flight. Control is exerted by gimballing four of the eight 

engines to provide torque. The actual vehicle pitch and 

pitch rate are assumed as the measured quantities, Because 

the vehicle is flexible the body cannot be considered rigid, 

rather it behaves as a vibrating free-free beam with a con- 

trollable torque applied at one end. As a result, the 

pitch and pitch rate sensors measure the local angles, not 

the fictitious rigid body angles. Moreover, g imballing of 

the engines to control pitch, etc. also excites the bending 

modes. The vehicle is subjected to wind gusts and the 

vehicle parameters change appreciably during the course of 

the flight, Finally, many of these parameters are only 

approximately known 5 priori since full scale testing is 

, 
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difficult. The control problem amounts to synthesizing a 

controller which can operate on the measurable signals, 

pitch and pitch rate, and control the vehicle attitude in 

spite of parameter variations and with aerodynamic dis- 

turbances present. 

In order to restrict the problem to manageable 

size, while retaining a meaningful plant description the 

following general assumptions were made about the vehicle 

response: 

10 

2. 

30 

4. 

Only first order bending mode effects are 

included. 

No sloshing effects are included. 

The engine gimbal angle is taken as the 

control input. 

Viscous cross flow effects, occurring at high 

angles of attack, are ignored. 

4.1 Vehicle Equations 

Figure 4-l defines the coordinates used for the 

rigid body. The pertinent rigid body equations are 

.O 

9, = 
- Cl a - C2 f3 (4.1-1) 

70 



Vehicle 
Reference 

/ 

I/ ) Launch 
Horizont a I 

J Drag 

Figure 4.1 Cocrdinate Definitions 
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. . F-X 
Z= 

M. 

a=# R - k/V + aw 

(4.1-2) 

(4.1-3) 

where @R 
= Rigid body pitch angle. 

F-X = Accelerating Force. 

k = Velocity normal to the reference. 

a 
W 

= Angle of attack induced by the wind. 

cl = The aerodynamic torque coefficient. 

c2 = Engine Torque coefficient. 

v= Nominal velocity 

These two quantities may be written 

N’ N’ 
Cl = I Jcp = y- (xcg - xcp) (4,104) 

xx xx 

. 

(4.1-5) 

Equations (4.1-1) through (4.1-5) may be combined to obtain 

the differential equations for pitch and angle of attack. 

d(a - awl F-X 
dt =-MV #, + iR - g ca - awl - 

(4.1-6) 

4, N’l 
dt=- cp Rll,gp 

I a - Ixx xx 
(4.1-7) 
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These equations describe the rigid body performance of the 

vehicle. The bending effects are included by considering 

the bending to be a vibration in "normal coordinates". 13 

The angular deformation at any given point on the beam is 

then the amplitude of the normal coordinate multiplied by 

the mode shape coefficient for that position. 

The equation of the first normal mode is that of 

a linear oscillator 

y1 + 25, a1 Gl + al2 ‘I1 = TB 
(4.1-a) 

where 'I1 = Normal modeaqlitude 

031 = Mode frequency 

5, = Mode damping 

The right hand side of (4.1-8) illustrates how the mode is 

excited by the engine. The term Y(xg) is the mode shape at 

the gimbal station and Ml is the "generalized mass" for the 

first bending mode. The sensors measure the angular position 

and rate locally, that is at their location. This angle is 

the sum of the rigid body angle and the bending angle. Hence 

the sensors measure 

%3 = 6, + @B = ‘+ - ‘1’ (x,) tll 

i, + i, = i, _ ‘1’ txi) il 

(4.1-9) 

(4.1-10) 
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Where x9 and xi are the positions of the pitch and pitch 

rate sensors respectively on the vehicle. 

Equations (4.1-6) through (4.1-10) may be combined 

to obtain a matrix description of the vehicle which is 

required to apply the theory developed previously. 

Generally 
. 
x=Ax +Bm+I'u 

Y = cx (4.1-11) 

where the matrices A, B, C and I' are written out as 

A = 

0 1 

0 0 

,7-x 1 
Mv 

0 0 

0 0 

0 0 0 - 

-ys.E) 0 0 
xx 

!c 
Mv 0 0 

0 0 1 

0 
2 

'UJ 1 - 2cp1 

T R'J 
B= ()--y-s -g 0 

R'Y&) 

xx Ml 
J 

1 0 0 -Y1' (x,> 0 

C = L 0 1 0 0 -Y1' (x;l 

(4.1-12) 

(4.1-13) 

(4.1-14) 
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rT - 0 = 
1 

-q&E AC 0 Mv 0 
xx 

1 

(4.1-15) 

XT = 

1 
4 i (a- awl q1 ;1 

J 
(4.1-16) 

A block diagram of these equations is shown in 

Figure 4-2. The aw term is seen to play the role of dis- 

turbance. The entire question of wind disturbance is dis- 

cussed in Section 4.3. Because the analysis has been carried 

out in terms of discrete plants it was necessary to convert 

the continuous description given by (4.1-12) through (4.1-16) 

to the discrete case. The manner in which this was 

accomplished is discussed briefly in 4.2. 

4.2 Discrete Representation 

It is desired to convert the vehicle differential 

equations to their equivalent difference equations. Specifi- 

tally, 
3; * * 

a set of matrices A , B , C , I'* is sought such that 

x(k + 1) = A* x(k) + B* m(k) + r* u(k) 

y(k) = C* x(k) (4.2-l) 

gives the same response at the sampling intervals as does 

the system of (4.1-ll), under the assumption that m and u are 

constant over the interval (k, k + 1). Since there are five 
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Figure 4.2 System Block Diagram 



state variables, analytic conversion either through use of 

z transforms or of fundamental matrix methods was clearly 

out of the question. Rather, a computer program was 

written to convert the equations by successive integrations. 

First, it is readily apparent that C* is equiv- 

alent to C, since these relations are algebraic. To find 

A* note that if m and u are identically zero and the vector 

x(0) is zero everywhere except for a 1 in the jth row then 

the value of x, from equation (4.1-11) one sample period 

(T seconds) later is 

x(T) = a. 
J 

(4.2-2) 

where a. 
J 

= jth column of A*. By varying j from 1 to n the 

complete matrix A 
* 

is thus found. Similarly by setting 

x(O) Z 0, u 5 0, m(t) = 1 and integrating (4.1-11) over a 

sample period B 
* 

is obtained as the value of x(T). Finally 

I'* is found from setting x(0) = 0, m(t) = 0, u(t) = land 

integrating. 

The data for the continuous case was obtained at 

eight second intervals from Reference 1. Sane of the 

important curves are plotted in Figures 4-3 to 4-7. The 

data was then hand converted to the matrix formulation given 

by equations (4.10123to (4.1-16). Sensor locations of 
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x@ 
= 120 meters (4.2-3) 

x. = 
@ 

50 meters (402-4) 

were chosen from a chart of allowed sensor locations. These 

locations are actually not optimal from the standpoint of 

mode shape nulls but rather were chosen to illustrate the 

systems ability to filter out the bending frequencies. Other 

constants and miscellaneous relations used were: 

X = 2.54 m 

A = 79 m2 (4.2-5) 

N’ = C .uq A 

The A, B, C and r data was then punched on cards, 

The conversion program reads the cards, sets the initial 

conditions as described above and employs a Runge-Kutta 24 

integration routine to successively obtain x(T), Since it 

was decided to use 

A T = 1 set (4.2-6) 

in the sampled representation the program then performed 

linear interpolation of the A*, B*, C* and I?* matrices, to 

get their values at each second, rather than their values 

each eight seconds. Finally, the results were punched out 

to form the booster master description. 

83 



4.3 Wind Disturbances 

The vehicle description given in Reference 1 also 

contains a discussion of wind data. The following is a 

summary of that material as it was used in this study. 

Figure 4-l shows the geometry 

velocity v, the wind vector w 

attack, a w ' due to the wind. 

that 

w cos 

of the vehicle inertial 

and the resultant 

From this figure 

X 
a 

W =V - w sin x 

angle of 

it is clear 

(4.3-l) 

where x'is the tilt angle measured from vertical at launch. 

Notice that the wind is assumed to be normal to the launch 

vertical. Although Reference 1 contains extensive dis- 

cussion of wind shears and embedded jets it was decided that 

for this study a w would be treated as having two components, 

such that 

a =a 
W wss + OLwr (4.3-2) 

The component awss would represent the steady state wind 

component, while awr would be a random component which would 

represent wind gusts. Further, it was assumed that the wind 

gusts were uncorrelated with respect to the 1 set sampling 

intervals used. 
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The steady state components were computed using 

equation (4.3-l) and the data on v and x supplied for Model 

Vehicle No. 2. These are shown plotted in Figures 4-3 and 

4-5. For w, the wind speed, a wind speed profile envelope 

was chosen. This profile is reproduced as Figure 4-8. The 

profile used is a worst case profile in the sense that it 

represents the envelope of 95% probability of occurrence of 

wind speed over the entire year. The resulting worst case 

aw is shown, plotted in Figure 4-9. This profile was 

included as part of the vehicle master description. To get 

other cases, the worst case profile could be multiplied by 

a suitable scale factor. 

4.4 Evaluation of the Vehicle Control System -- 

In order to evaluate the performance of the con- 

troller developed in the previous sections for the flexible 

launch vehicle problem the entire system was simulated on a 

digital computer. Actually due to the complexity of the 

problem three simulations were used. The first one had no 

parameter identification or feedforward term but consisted 

solely of the classic Kalman filter plus feedback gain matrix 

configuration. This simulation was used because it was felt 

that a reasonable choice of the performance index weighting 
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matrices Q and S could be made more easily if the effects 

of identification were removed. This system would also 

provide a benchmark for comparison with the adaptive system 

performance. The second simulation, actually a minor modi- 

fication of the first, incorporated the feedforward term. 

Finally, the third simulation incorporated the adaptive 

System. Appendix C contains a flow chart for each,together 

with some descriptive material. 

Numerous runs were made with the first system, 

since it was the simplest, and considerable insight into the 

behavior of a Kalman filter-gain matrix controller was 

obtained. The usual procedure was to utilize nominal vehicle 

data and exact matching of assumed and actual noise variances 

while adjusting the weighting matrices Q and S. When 

apparently satisfactory performance was obtained the result- 

ant control was evaluated for off nominal vehicle parameters 

and discrepancies between the design and actual noise levels 

for both the wind and the sensors. The initial conditions 

chosen for all cases were 

(b 3 5O 

;= 0 

a=a W 

rl = .02 meters 

t;= 0 (4.4-l) 
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Most systems were designed assuming the noise variance of 

the wind to be 0.5O and a sensor disturbance matrix of 

L= [ 'f l 5-J (4.4-2) 

Some of the early runs were made with twice these noise 

levels but it was felt that such levels might be unreal- 

istic. Appendix D contains a log of all simulations, 

together with brief remarks. 

Preliminary runs indicated that a choice of 

Q=O.l S= 

-2000 

1000 

0 

50 

25 . 

(4.4-3) 

gave reasonably good performance. The transient response 

to the initial error was rapid, requiring about 10 seconds, 

but the steady wind caused an error of about lo in pitch in 

the neighborhood of max q (80 seconds), In an effort to 

improve this the weighting on the bending terms (x4 and x5) 

was reduced. This resulted in very high vibration in the 

bending mode, Even more interesting was the discovery that 
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a reduction of Q to .Ol resulted in a virtually identical 

(to two decimal places) performance to that obtained when 

the weighting of (4.4-3) was used. This result, obtained 

as run I-7, indicated that the problem was not lack of 

control effort, at least for small pitch angles, but a trade- 

off between control of the pitch angle and excitation of the 

bending. When the bending weight was dropped to 5 and 2.5 

for position and rate respectively the vibration was severe 

and there was little improvement in the pitch angle. Another 

interesting facet of the problem appeared for the latter 

weighting when a run was made with the actual sensor noise 

reduced by a factor of 5 from the design value of (4.4-2). 

The vibration actually got worse (run I-4) contrary to 

expectation. This phenomena was observed several times 

(runs I-4, III-4, 111-5) and appeared whenever very high 

pitch weightings were used. The heuristic argument explaining 

this is that the high weighting results in a very tight pitch 

loop. Any off nominal noise level causes errors in the 

Kalman filter and the resultant noise propagates through the 

bending mode and the tight loop. 

As a result of the Block I runs it was decided 

that the bending weighting had to be some fraction of the 

rigid body weighting in the neighborhood of equation (4.4-3) 
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to minimize vibration. Figure 4-10 shows the performance 

of the system for these weightings. The maximum dynamic 

pressure occurs at about 80 seconds. Notice the decided 

peak in the control effort curve in this region as the con- 

troller has to counteract the wind disturbance. Also notice 

that the bending vibration goes up in this area. The 

initial conditions are as given in (4.4-l) for these curves. 

After a sharp transient in the bending induced by the con- 

troller reducing the pitch error the bending mode has 

practically no oscillation. Due to the steady wind both the 

pitch angle and the bending exhibit an offset, which becomes 

more pronounced as peak dynamic pressure (max q) is 

approached. For clarity in the figure -f3 is plotted to keep 

it separate from rp without having to make a separate plot. 

The offset in pitch and bending was naturally con- 

sidered undesirable. Since it had been established that 

raising the pitch weighting was not satisfactory the next 

runs (Block II) experimented with weighting angle of attack 

and adding a non-zero off diagonal term to the matrix S. 

Weighting angle of attack invariably produced a large degree 

of instability, apparently due to the disturbance input. The 

next attempt to decrease the offset was to include a term 

k x1 x4 in the performance index by making S14 = S41# 0. 

91 



4 

2 

s 
0 

K( 

; 

-2 

d 

0.2. 

s 

5 

3 

-0.2 

s= 

0 
100 0 

0 

\ 

4 .25 0 
Qa = 0.5 L= [ o 1 .25 Q = 0.1 

Pitch and Engine Gimbal Angles 

I 
IO 

I 
20 40 40 Al 

Time (sets) 

I 
60 710 

I 
80 

Figure 4.10 System Performance Without Feedforward 



For small values, say 5 to 10 this did indeed give a slight 

improvement. When the term was increased however, the 

control became very oscillatory. Early success with this 

cross term led to some trials with an increase in the pitch 

weighting. These further reduced the pitch error, but as 

before were extremely sensitive to the noise levels actually 

present relative to those assumed in the system design 

(Block III). 

Fl.ights with off nominal vehicle data indicated 

that the control system with the weights of equation (4.4-3) 

was more than adequate to compensate for 2 20% changes in 

the aerodynamic lift coefficient. On the other hand, varia- 

tions in bending frequency resulted in severe vibration in 

the bending modes (Block IV). This is probably due to the 

fact that the rigid body mode can be controlled and measured 

through a tight loop whereas the bending is not easily 

measured. As a result it was decided to concentrate upon 

the off nominal bending case. In particular the -20% bending 

frequency was considered because this moves the bending down 

further into the pass band of the controller. Once again 

increase in the pitch weighting did not improve the situation 

with respect to bending frequency although the off nominal 

aerodynamic cases showed no degradation, 
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With the addition of the cross product term it 

was found that reasonable noise insensitivity and pitch 

control could be obtained by setting 

Q=O,l S= 

-10000 0 0 5 o- 

0 5000 0 0 0 

0 0 0 0 0 

5 0 0 50 0 

0 0 0 0 . 25- 

(4.4-4) 

However, some vibration was induced when the noise levels 

shifted from their nominal values (Block 5). For this 

reason a compromise was chosen, and for simplicity the 

cross product term dropped. The final weighting factors 

chosen were 

Q =O.l s= 

4000 

4000 

0 

50 

25 

(4.4-5) 

Figure 4-11 shows the nominal system performance for this 

choice of weighting factors. There has been a slight 

improvement in the pitch error at the expense of the bend- 

ing displacement. Figure 4-12 shows the same system for a 
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20% reduction in bending frequency. Notice the high 

vibration. 

Figures 4-13 and 4-14 show the system performance 

for off nominal wind gust noise and sensor noise respec- 

tively. No signif,icant degradation in performance is 

observed. Indeed, for the reduced sensor noise the only 

noticeable change was an improvement in the estimator. 

Reduced wind noise causes a smoother flight to result. 

Figure 4-15 shows the advantages of the feed- 

forward term in reducing the wind offset. The most easily 

noticed difference is in the gimbal angle. The peak in the 

control effort near maximum dynamic pressure is missing. 

This is because the feedforward term possesses prediction 

and can attempt to correct for the disturbance before it 

actually occurs. Both the bending and the pitch are 

reduced although the pitch reduction is small. On the other 

hand the bending deflection is cut in half in the region of 

maximum dynamic pressure. Figure 4-16 shows the problem 

with this controller for -20% bending frequency. Notice 

the high vibration, although pitch control seems only 

slightly degraded. This seems partly to be due to the 

characteristics of the estimator. This figure, unlike the 

others, also has the estimated bending plotted. The 
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estimator output follows closely the curve the actual bend- 

ing did for nominal data! (Compare to Figure 4-15.) This 

phenomena was also observed when the feedforward term was 

not present in the controller. The vibration amplitude 

seems to have an envelope with a time constant of about 40 

seconds, In the area of maximum dynamic pressure the vibra- 

tion damps out, or the frequency goes up and the amplitude 

comes down due to the aerodynamic forces. 

These results clearly indicate the necessity for 

some sort of adaptive system which can account for the 

variations in the bending frequency. Because the aero- 

dynamic variations had had little effect upon system per- 

formance the identification was limited to the discrete 

parameters associated with the bending and the unmeasurable 

angle of attack due to the wind. Although the continuous 

vehicle has only two parameters which are functions of the 

bending frequency, the discrete version has four parameters 

which are functions of the frequency. If the unknown mean 

of the wind disturbance czw is added a total of 5 parameters 

to be identified are obtained. Define the state vector as 

(4.4-6) 
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Then the augmented state is 

T - 
xA = I 

#, i, a - awrrlr t;, a449 a459 a549 a553 Qw 
J 

(4.4-7) 

L 

where a44 etc. are the four discrete parameters related to 

the bending frequency. The differential input vector and 

transition matrix are given by equation (4.4-8) and (4.4-9) 

shown on the next page. 

C E) = LrT Ya44Ya45Ya54Ya55y~w ] 
(4.4-8) 
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3f 
ax x(kjk)= 

all a12 

a2l a22 

a31 a32 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

{O 0 
L 

a13 0 0 

a23 0 0 

a33 0 0 

0 a&w a45(klW 

0 a@l w a#l w 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

x4(kl W x5& lk) 

0 0 x4(W) x5(W) 0 

( w44 

0 

0 

0 

0 

0 

w45 

0 0 dl 

0 0 d2 

0 
0 

d3 

0 0 0 

0 0 0 

0 0 0 

w54 0 0 

0 w55 0 

0 0 W 
a - 

(4.4-9) 



The terms dl to d3 are the input coefficients for the wind 

disturbance aw . The state equations by which the con- 

ditional estimate is computed are 

x(k + Ilk)= A(kJk) x(k) + Bm(k) + I' aw(kIk) 

y(k) = Cx(klk) + Lv(k) 

where the matrices A, B, r, C are given by 

- - 

all a12 a13 O 0 
bl 

a21 a22 a23 ' 0 
b2 

A(W)= a31 a32 a33 0 0 B = b3 

0 0 0 a44(W) a45(W) b4 

0 0 0 a54WW a5plw d -b5_ 

and the disturbance uw is given by 

a 
W 

= aw(kjk) + aa u(k) 

(4.4-10) 

-. I - 

dl 

d2 

d3 

0 

0 
. - 

(4.4-11) 

where u(k) is a unit variance random variable and aw is the 

estimate of the average wind as plotted in Figure 4-9 for 
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the nominal case. 

Early runs with the adaptive system indicated 

that the convergence is highly dependent upon the initial 

values of the augmented covariance matrix. Choosing the 

initial value to be the identity matrix, a procedure which 

worked well in the other systems, invariably caused machine 

overflow. Apparently such a choice assigns too large an 

error to the parameter estimates, causing the 6a terms to 

grow rapidly. Likewise, after this problem was solved, it 

was found that the estimator performance seemed much more 

sensitive to the values of the input noise gains for the 

parameters (yp) than the weighting term (w). Exactly why 

this should be so is not readily apparent. In any event 

Figure 4-17 shows the performance of the adaptive system 

for a -20% bending frequency. Due to program storage 

limitations the feedforward term was dropped in this system, 

It could have been added by using tape storage, however the 

resultant program slowdown was felt to be too much. Further, 

the effect of the feedforward was known to cause a decrease 

in the steady offset, not the vibration which was of primary 

interest from the identification point of view. 

The reduction in bending vibration is striking. 

Notice that the system requires about 10 seconds to identify 
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the off nominal frequency after which the vibrations are 

well damped. However, the bending is not quite so good as 

in the nominal case and there is some additional pitch 

error. Interestingly, at the end of the flight there is 

a small vibration in the bending mode in either case. This 

is probably due to the predominant sensor noise when the 

pitch angle falls off to zero. 

4.5 Discussion of Computer Results 

The difference in performance of the system with 

and without adaption demonstrates the effectiveness of the 

synthesis procedure which has been developed. With the 

experience gained from the many computational runs which 

were made it is now possible to make some remarks about the 

results obtained. 

1. The difficulty of the control portion of 

this problem has probably tended to obscure the identifier 

characteristics. Inspection of the run log in Appendix D 

shows that considerable time was spent choosing weighting 

factors. This is a result of the plant description. Less 

complex plants, without parallel branches, for instance, 

would present less of a challenge in the choice of weight- 

ing factors. 
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2. Like conventional optimal control, the 

weighting factors do not adequately express the subjective 

criteria of goodness which the designer has in mind. In 

particular, from a subjective viewpoint, the control and 

estimation problem cannot be separated. One of the biggest 

difficulties seems to be the propagation of noise through 

the feedback when the gains are increased in order to 

improve the performance. 

3. Amplifying on item 2, it is apparent that the 

designer will seek a system which is insensitive to varia- 

tions in the assumed noise levels. The limited experience 

gained from this example indicates that such a goal will 

be in conflict with achieving high control system accuracy. 

Therefore the weighting matrices cannot be picked by 

observation of a noiseless system. 

4. Not only did the feedforward term reduce the 

offset error but it also reduced the bending vibration. It 

is now felt that the gains should have been chosen with the 

feedforward term included, rather than the method used in 

this study. 

5. The sensitivity of the parameter identifier 

to the initial values of the covariance matrix was un- 

expected and resulted in considerable delay. This is in 
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contrast to the state estimate whose initial covariance 

seemed to have little effect upon performance after the 

first few time points. 

6. The insensitivity of the parameter identifier 

to the weight matrix was also unexpected. Unfortunately 

the time consumed by the difficult problem of choosing 

control weighting factors and the fact that this was the 

most complex of the three simulations left little time for 

an exhaustive study of the influence of the fictitious 

noise gains and weighting factors upon the estimator. For 

an investigation of this sort it would seem advisable to 

postulate a simple model, preferably time invariant. In 

this way the effects of parameter identification can be 

easily studied apart from the control problem. 

7. From the engineering viewpoint, the com- 

plexity of the adaptive system studied here leaves some- 

thing to be desired. An alternate approach to problems of 

this type might be to postulate a controller composed of a 

Least Squares estimator and a gain matrix. Parameter 

optimization or noise sensitivity analysis could then be 

carried out on this structure to obtain a de-sensitized 

control system, Although this appears to be a step back 

in the sense that parameter adjustment is a well known 
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technique, it has the appeal of simple realization. (This 

is the approach advocated by Horowitz 14 in a way.) 

8. Due to the computational complexity, the 

one step approximation of the new control law has not been 

evaluated against a complete recomputation over the 

interval. At this time it can only be concluded that the 

proposed adaptive control law worked in this case. 



SECTION V 

CONCLUSION 

5.1 Conclusions 

A method of synthesizing an adaptive controller 

for linear, discrete, time-varying systems has been devel- 

oped. The development is based upon the assumption that 

the system will be divided into a feedback gain matrix 

operating upon state estimates supplied from a Least Squares 

type filter and a parameter identifier. The parameter 

identifier is to make new parameter estimates based upon 

observation of the normal input and output of the system. 

The plant is subject to state disturbances and the available 

measurements are noisy. 

Incorporation of deterministic disturbances, or 

stochastic inputs with non-zero means, is easily handled by 

a variation on the conventional Dynamic Programming approach, 

The necessity of a Least Squares estimator is also seen to 

follow directly from the use of a quadratic performance 

index. The resulting system differs from the usual 

regulator only in the appearance of a feedforward term. The 

filter equations may be solved as a set of recursive 

relations. For non-adaptive systems the filter constants 
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can be obtained from an off line computation since they 

are not a function of the measurements. 

On line parameter identification is shown to 

require a time varying controller and excitation of all 

modes of the system. For both state and measurement noise 

Least Squares techniques cannot be applied directly. 

Adjoining the unknown parameters as additional states 

results in a non-linear estimation problem. Recursive 

relations, of the Least Squares type, can be obtained for 

such systems by considering a linearized model for the 

error propagation through the plant. For a linear plant 

the augmented equations are bi-linear and the error propa- 

gation is accurately described whenever the relative errors 

in the estimation are small with respect to the parameters 

themselves. 

It is proposed that the new parameter estimates 

be used to alter the control law by making a one step 

calculation from the stored nominal Ricatti matrix. The 

example shows that the proposed method is workable. No 

meaningful conclusions about the general efficacy of the 

proposed adaption can be drawn until a comparison to the 

continuously recomputed optimal control is made. Such a 

comparison would be most easily made for fixed Parameter 
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plants. 

The computational requirements of the augmented 

state approach are not trivial. For the five states and 

five parameters estimated in the example the augmented 

state vector has ten elements, or twice the dimension of 

the original state. Since most of the calculations involve 

square matrices the computations go up by a factor of four. 

Further, the augmented covariance propagation cannot be 

computed off line because the transition matrix is a function 

of the previous estimates and therefore of the actual 

previous measurements. 

An attractive alternate, from the computational 

standpoint, would be to postulate a structure comprised of 

a Least Squares type filter and a gain matrix. Sensitivity 

analysis could then be applied to obtain a closed loop 

parameter insensitive system. This would have the advantage 

of requiring no on line calculations. 
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Appendix 4 

Programming Techniques 

A brief discussion of some of the less obvious 

numerical methods employed in the simulation of the control 

system and booster are given here. 

A-l Noise Generator 

The white Gaussian random noise was simulated using 

a modified multiply sequence method. An equidistributed 

sequence of numbers Xn lying in the range (0, 1) are first 

generated using the recursive relationship 

X n+l = {Nxn + e) 

where [ ) denotes llfractional part of'. Franklinl* has ex- 

haustively analyzed such sequences and obtained many impor- 

tant results, the following theorem being among them. 

Theorem: "For almost all X0 , the sequence (given by Al) 

has an auto-correlation function R(T) such that R(T) + 0 

uniformly in 7 for 7 # 0 ". 

The proof is quite involved and is given in Franklin's paper. 

From a computational standpoint the statistical accuracy is 

enhanced by causing N to be as large as possible for the 

given machine word length. The number 8 is arbitrary and is 
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used to prevent a continuing sequence of zeros from 

occurring. 

From equation Al, the actual sequence generated 

in a simulation is entirely determined by X0 the initial 

value or priming used in the generator. This allows the 

same random sequence to be repeated if desired for different 

runs. The advantage of the computational sequence of 

equation Al over stored random digits tables from the 

storage viewpoint is obvious. But, the same paper also 

shows that even choosing 8 transcendental is not sufficient 

to guarantee an equidistributed sequence. However, for com- 

putational purposes it is the most convenient. 

Box and Muller4 have found an ingenious method of 

converting the equidistributed distribution into a normally 

distributed one via a transformation, A straightforward 

transformation must use the error function, which itself is 

difficult to compute. However, their result is as follows: 

Theorem: "Let Xl and X2 be independent random variables 

from the same rectangular density function on the interval 

(0, 1). Then the pair ul, u2 related to Xl and X2 by 

I 

ulp '-2 In Xl cos 27rx* WI 
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u* +/. 30 -2 In Xl sin 2xX2 (A3) 

are a pair of independent random variables from the same 

normal distribution with zero mean and unit variance." 

As before, the proof is rather involved, however 

the authors also give an interesting heuristic argument to 

illustrate how they arrived at this transformation. If u, 

and u 2 are thought of as distances 

assumed drawn from the same normal 

variable 

A 

on orthogonal axes and 

distribution then the 

0 = tan -1 2 
u1 

has its density function uniformly 

interval 0 to 2x. The inverse of 

and (A3) is 

(A4) 

distributed over the 

the transformation (A2) 

X2 
1 

= 27~ tan-l z 

X1 = e -t(u,* + u2*1 

(As 1 

u46) 

Therefore if ul and u2 are normally distributed X2 is uni- 

formly distributed. The square of the radius r* = u12+u2* 

has a Chi square distribution, therefore Xl also has a 

uniform distribution. 
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More precisely, for a continuous transformation 

Y" f(X) (A7) 

the density function of y is related to that of X by 

P*(Y) - ~1 (X- f(y)) 1 J 1 (A&) 

Since the joint density function of Xl, X2 is 

P(X1' X2) = 1 x1, 5 E (0, 1) WW 

and J is the Jacobian of equations (A5) and (Ad) the joint 

density of ul, u2 is 

P(ul, u2) - Y& e -4(u1* + u2*1 

= b e-% ] k e- y] (A9) 

The variables ul, u2 are therefore normally distributed. 

A-2 Plot Routine 

Because the computer was used as a simulation 

device rather than a data processor, numerical output data 

is of less interest than curves of the familiar analog type. 

These were generated through a special PLOT subroutine. 
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Briefly, the plot is generated by quantizing the variable 

to be plotted into approximately 100 levels. A symbol is 

then printed in the corresponding print position as a point 

on the curve* The subroutine allowed simultaneous plotting 

of up to eight curves, together with time axis and scale 

factor information. 
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Appendix ,B 

The Continuous Case 

The continuous case system equations may be 

obtained by analogy to the discrete case. No attempt at 

rigor will be made here, rather the corresponding results 

are simply indicated. 

The controller has been shown 15 to be comprised 

of the optimal feedback gains and the continuous Kalman 

filter17. For deterministic disturbances, the plant 

equations are 

ii = AX + Bm + d(t) (Bl) 

The corresponding performance index to be minimized is 

J= 
J 1 

T -1 T 
2 x w S(a) X(a) 

tO 

1T 
+ 2 m (~1 QW 0) d Q (B*) 

The resultant control equation is obtained using Calculus 

of Variations and adjoining the plant equation (Bl) to the 

performance index. The resulting equations are 

m(t) = -Q -l BT h(t) 03) 
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i(t) = -AT h(t) - SX(t) WI 

h(T)- 0 055) 

If a terminal weighting matrix R is included then the 

boundary condition on the multiplier is 

h(T) - RX(T) 036) 

which is equivalent to an impulse weighting of S at time T, 

To obtain a feedback and feedforward control assume a 

solution for the multipliers of the form 

A(t) = p(t) x(t) + E(t) (B7) 

Substitution of (B7) into (B4) and grouping of terms gives 

the resulting separated equations 

-g(t) - A TP+PA+S-PBQ -lBT P 038) 

4 w = P d(t) - PBQ-1 BT c(t) + AT e(t) (-1 

with boundary conditions 

4(T) - 0, P(T) - R (BlO) 

The estimator for states and parameters is the 

continuous analog of the discrete filter. The noisy system 

is described by 

b> = A X(t) + Bm(t) + I' u(t) + dl(t) (Bll) 
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z(t) = C x(t) + L v(t) + d2(t) 0312) 

For simultaneous estimation of states and parameters the 

continuous version of the Wiener-Xalman filter is used based 

upon the linearized plant model. Let XA denote the aug- 

mented state vector and rp the effective noise driving the 

parameters. In the limit as A t goes to zero the continuous 

equivalent of the parameter transition equations is 

da 
2 3 ki [Zi - ai ] + yp u, dt I 

(B13) 

The linearized version of (Bll and (Bl2) is 

or in terns of augmented matrices 

. 
bxA = AA 6X + BA mA + FA uA 

So that the estimator equations are 

(B14) 

(B15) 

d^xA n n 
dt - A X(t) + q(t) 

1 
z(t) - C X(t) 

J 
ow 

126 



e(t) = P(t) c; (LLT)'l 

dP 
at - AA P(t) + P(t) A; - PC: LLT CA P + PAPAT 

where 

'A = 1 J -c ’ o- 
I 

0317 1 

0318) 

019) 

In the case of gain modifications as a result of new para- 

meter estimates, the analogy is not so clear. For the 

discrete case one step ahead was a finite time interval and 

therefore a first order gain perturbation effect could be 

obtained. In the continuous case the Riccati matrix is at 

the same time instant. Therefore unless some method of 

extrapolating ahead a short interval and recomputing the 

gains backward is used it is not clear how the optimal gains 

ought to be altered as a function of the new parameter 

estimates. Indeed this is an important general question 

pertaining to adaptive control which must be investigated 

further. 
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Appendix s 

Program Details for the Launch Vehicle Problem 

As described in Section 4.2 the continuous des- 

cription of the vehicle was converted to a discrete one via 

a digital computer program. The output of this conversion 

program was a set of cards, punched in an A format, contain- 

ing the non-zero entries for the matrices A, B, C, F and the 

angle of attack due to the wind. This deck constituted the 

vehicle description. Similar decks were also made up for 

2 2OZ lift coefficient deviations to provide off nominal 

vehicle representations. 

Three types of programs were run. Each used basi- 

cally the same subprograms but the main program was varied 

and some of the subprograms were also modified. The three 

programs were 

1. Feedback control only. No parameter identifi- 

cation. 

2. Feedforward plus feedback. No parameter 

identification. 

3. Feedback control only. Parameter identification 

and control adaption. 

Each of the three used the same type of subprograms although 
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they differed somewhat from version to version. The sub- 

programs used and their general purpose were 

1. Function WNj8ISE - Generates an independent 

normal random variable of zero mean and unit 

variance. This is the noise generator 

referred to in Appendix A. 

2. Subroutine UNPACK - To save cards the vehicle 

description was condensed to contain only the 

non-zero elements and placed in a large array, 

usually called "STORE't, having time as one of 

the indexes. UNPACK recovered the A, B, C, J? 

matrices and ow from the array at a specified 

time point. 

3. Subroutine STATE - Solved the state equations 

x(k + 1) - Ax(k) + Bm(k) + Du(k) 
(Cl) 

y(k + 1) - Cx(k + 1) 

for the next x and y. 

4. Subroutine GAIN - The generic name for the 

program computing the feedback gains (and the 

feedforward). GAIN computed one time step each 

time it was called, computing the new gains 

and new Riccati matrix. 
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5. Subroutine ESTIMD - Solves the Kalman filter 

equations for the correction matrix q(k + 1) 

and the new covariance matrix from the old 

covariance. For the adaptive system this 

routine was called PSI since it dealt with 

augmented matrices. 

6. Subroutine PLOT - Rather than print out the 

data numerically, PLOT produced the equivalent 

of an analog strip chart recording of the 

variables of interest in the problem. 

Actually, programs 1 and 2 differed only in the 

computations in subroutine GAIN and in the control computation. 

Programs 1 and 2 each had two versions. The first version 

used the same vehicle data for computing the gains and 

actually flying the vehicle. The second version computed the 

gains from the first data set but read in a second set for 

use as the actual vehicle coefficients. The estimator in the 

second version used the data from which the gains were com- 

puted. Because the two programs differ only in the gain com- 

putation separate flow charts of them will not be presented. 

However, the sequence of computations for the two versions 

of each program is sufficiently different to warrant separate 
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charts. For this reason flow charts are presented of version 

one, colloquially referred to as "BCF and version two, 

called "BCP + 2" are given in Figures Cl and C2. 

The "BCPP program proceeded in a straightforward 

manner. Control cards specifying the print out frequency 

and so on were first read followed by the vehicle data pack 

and the matrices Q and S. The gains are computed in a loop 

using the UNPACK routine to get the data and the GAIN routine 

for the computations. The resulting gains are stored back in 

the large array STOKE, When the gains have been computed for 

the entire interval the data cards specifying initial con- 

ditions and noise amplitudes are read. Initial conditions 

and constants used are then printed and the flight is com- 

puted inside a second large loop. Within the flight loop the 

data is again unpacked for the current time point and the 

next control computed from the state estimate and the unpacked 

gain matrix. Prior to actually taking the step a status 

printout may be made and the data for the plotter is stored. 

The step is taken and a new measurement computed. This new 

measurement is processed by the estimator to yield a new 

state estimate and the loop is repeated until the terminal 

time. After the last point is computed the plotter prints 

out the flight data, The entire program is inside a program 
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Initialization 
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Booster Dota 

I 

I. Fetch Data (UNPACK) 

2. Compute K(Nl? (GAIN) 
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Data Cards 
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2. Compute Control 
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+ 

NT NT+! 

1 PLOT Results 1 
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- 

Figure Cl BCP Program Flow Chart 
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I I 

4 
( NT = I 93 

No 

Print Prob Consts 

PLOT ,RESULTI 

STOP 

Figure C2 BCPt2 Flow Chart 
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loop and may be re-run with new data. 

The "BCP + 2" program was written to evaluate 

system performance when the actual vehicle parameters 

differed from those used in the gain computation and the 

estimator, In this case two vehicle data sets are read in. 

The gains are computed from the first data set as are the 

controls and the estimator outputs. However, the actual 

state is computed using the second data set which can rep- 

resent off nominal vehicle performance. Notice that suc- 

cessive cases use the same data set No. 1 but read a new 

second data set. Also the gains are not recomputed for 

succeeding cases so that the program can only evaluate the 

effect of various types of abnormal conditions for a given 

controller. 

Finally, the adaptive program flow chart is shown 

as Figure C3. As before the control cards and first data 

set are read in and the gains computed. However it is not 

the gains that are stored but the Riccatimatrix which 

occupies more room. The Riccatimatrix is temporarily put 

into the second data set array which is blank. When the 

entire interval is computed the Riccati matrix, together 

with all vehicle data is recorded on tape in the forward 

time direction. This was necessitated by the extra space 
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required for the Biccati matrix storage. The tape is then 

rewound and the second data set read in to be used for the 

actual vehicle data. The parameter estimates are primed 

with the first values on the tape, the program data cards 

are read in and the flight loop coxxaences. The sequence of 

computations is the same but now the estimator is using the 

augmented equations. Multiple cases may be run for the same 

set of nominal parameters. 
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Appendix g 

Digital Simulation Record 

The following is a chronological history of the 

runs made on the digital computer to evaluate the vehicle 

control system, Not included are the early program devel- 

opment runs which were used for checkout purposes. The runs 

were divided up into blocks which are composed of related 

runs. For each run the values of Q and S are given or in- 

dicated and the noise powers are given by stating the 

variance of the wind induced angle of attack and the diag- 

onal values of the L matrix. If the actual noise level 

differed from the assumed level then the actual level is 

given with the word actual. Finally, a descriptive phrase 

or sentence indicates the performance of the system. In 

order to save time few intermediate results were printed. 

Output consisted of the digital plot generated by the machine. 

The evaluations were made from this plot. 

All runs were made with an initial pitch error of 

5O and a bending deflection of .02 meters. All other states 

were zero. The covariance matrix, P, was initialized as the 

unit matrix. For the adaptive system, the augmented P matrix 

was initialized as 
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Also, for the adaptive runs, a choice of parameter noise, 

yP ' 
for each of the five parameters and a value of the 

weighting factor w had to be made. These choices are also 

indicated. 

The descriptive phrases, for brevity, are invar- 

iably subjective evaluations. For a fuller appreciation of 

any given run it would be necessary to inspect the actual 

output plot. Unless otherwise noted only the diagonal terms 

of matrices are given, the others being zero. 

Block I - These runs were all lsade using nominal data. The 

controller has no feedforward. 

1. Q-O.1 S= 2000, 1000, 0, 5, 205 

sigma wind = 1.0 L= .l, .l 

Result: High vibration in bending mode 

2. Q=O.l S= 2000, 1000, 0, 5, 2.5 

sigma wind = 1,O L= .5, .5 

Result: High vibration, but better than I-l. 

3. Q-O.1 S= 2000, 1000, 0, 50, 25 

sigma wind = 1,O L f .5, .5 

Result: Better than I-2 with respect to bend- 
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ing but I-2 has tighter pitch control 

and larger p. 

4. Q=O.l S= 2000, 1000, 0, 5, 2.5 

sigma wind = 1.0 L= .5, .5 

actual L - 0.1, 0.1 

Result: Severe vibration, like I-l 

5. 430.1 S= 2000, 1000, 0, 50, 25 

sigma wind = 1.0 L = .5, 05 

actual L = 0.1, 0.1 

Result: About the same as I-3 in pitch. 

Very little vibration. 

6. Q=.l s= 2000, 1000, 0, 50, 25 

sigma wind = 0.2 L = .l, .l 

Result: Roughly equivalent to I-5 

7. Q=.Ol S= 2000, 1000, 0, 50, 25 

sigma wind = 0.2 L= .l, .l 

Result: Identical to I-6 up to 2 decimal 

places in all quantities. 

Block II - These runs were made to try and evaluate the 

effects of off diagonal terms in S, and weighting of angle 

of attack. The only non-zero off diagonal term was S14 a 

weighting of 9 xq and, because S is symmetric, S41. 
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1. Q~0.1 S= 2000, 1000, 5, 50, 25 

sigma wind = .5 L - .25, .25 

Result: High vibration, very poor. 

2. Q-O.1 S= 2000, 1000, 100, 50, 25 

sigma wind = .5 L = .25, .25 

Result: Unstable for first 90 sec. 

3. Q= 0.1 S= 2000, 1000, 0, 50, 25, S14 - 5 

sigma wind = .5 L - .25, .25 

Result: Good performance. Pitch error at 

80 sets is .7O. 

4. Q= 0.1 S= 2000, 1000, 0, 50, 25, S14 - 500 

sigma wind = .5 L = 025, .25 

Result: Unstable nearly everywhere. 

5. QmO.1 S= 2000, 1000, 0, 50, 25 

sigma wind = .5 L = .25, .25 

actual wind = .Ol actual L - .05, .05 

Results: Good performance, similar to II-3 

but smoother due to low noise, 

6. QmO.1 S= 2000, 1000, 0, 50, 25 

sigma wind = .5 L = .25, .25 

actual wind - 0 actual L = 0, 0 
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Results: Like II-5. Maximum pitch error is 

.7O due to steady wind shear. 

Block III - In an effort to further tighten the pitch loop 

the corresponding S matrix terms were raised. 

1. 

2. 

3. 

4. 

5. 

Q= 0.1 S= 10000, 5000, 0, 50, 25 S14 - 5 

sigma wind = .5 L- .25, .25 

Results: Improved performance over 11-5. 

Pitch error at 80 sets = 0.4O 

Qm0.1 S= 10000, 5000, 0, 50, 25 S14 - 5 

sigma wind = .5 L= .25, .25 

actual wind = .l actual L = .l, .1 

Results: Performance nearly the same as III-l. 

Q=O.l S= 20000, 10000, 0, 50, 25 S14 = 50 

sigma wind = .5 L= .25,.25 

Results: No pitch improvement but bending 

worsens. 

Q- 0.1 S= 20000, 10000, 0, 50, 25 S14 = 150 

sigma wind - .5 L= .25, .25 

Results: High vibration. 

Q- 0.1 S= 20000, lOOOO., 0, 50, 25 S14 = 50 

sigma wind = .5 L- .25, .25 

actual wind = .l actual L = .l, .l 
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Results: Very poor pitch and high vibration, 

Block IV - In these runs the gains were computed with nominal 

data but the actual flight used off nominal vehicle data as 

indicated. 

1. Q-.1 S= 10000, 5000, 0, 50, 25 S14 - 5 

sigma wind = .5 L = .25, .25 

Actual vehicle had +20% higher bending 

frequency. 

Results: High vibration. 

2. Same as IV-1 but for -2OZ bending 

Results: High vibration, 

3. Same as IV-l but actual vehicle had +20X lift 

coefficient and nominal bending,, 

Results: Good performance. At 80 set pitch 

error = 0.4 0 . 

4. Same as IV-l but actual vehicle had -20% lift 

coefficient and nominal bending. 

Results: Similar to IV-3, 

5. Q=O.l S- 2000, 1000, 0, 50, 25 %4 = 5 

sigma wind = .5 L = 025, .25 

Actual vehicle had +20X bending frequency. 

Results: High vibration. 
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6. 

7. 

8. 

Same as IV-5 but with -20% bending 

Results: High vibration, 

Same as IV-5 but with nominal bending and 

+20% lift coefficient. 

Results: Good performance, control effort 

appears to be less. 

Same as IV-5 but with nominal bending and 

-20% lift coefficient. 

Results: Similar to IV-7, but control effort 

is greater. 

Block V - This set was run using Q = 0.1 and S = 10000, 

5000, 0, 50, 25 S14 = 5 for all cases. The objective was 

to evaluate the control for off nominal noise levels and 

vehicle parameters. The design noises in each case were 

sigma wind = .5, L= .25, .25. The actual noises were the 

same unless otherwise noted. 

1. Actual vehicle had +20% bending 

Results: High vibration. 

2. Actual vehicle had -20% bending 

Results: High vibration. 

3. Actual vehicle had +2OZ lift 

Results: Good. Compares to 11-3. 
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4. Actual vehicle had -20% lift 

Results: Good. Similar to V-3. 

5. Nominal vehicle. Actual L = .05, .05 

Results: Good performance. Better than 11-3. 

6. Nominal vehicle. Actual wind sigma = .l 

Results: Goodi Better than 11-3, 

7. Data card error invalidated this runI 

8. Nominal vehicle. Actual wind sigma = 1, 

actual L = 1.0, 1.0 

Results: Some increase in bending over II-3 

and slight vibration. 

Block VI - These runs evaluated other choices of the weight- 

ing matrices Q and S. 

1. Q= 0.1 S= 5000, 10000, 0, 50, 100 S14 = 10 

sigma wind = ,5 L- 0.1, 0.1 

Results: Good performance, but not radically 

better than others, lower slew rate. 

Pitch error at 80 set is 0.5'. 

2. Qm0.1 S= 2000, 2000, 0, 50, 50 S14 = 10 

sigma wind = 0.5 L= 0.1, 0.1 

Results: Good performance about equal to 11-3, 
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3. Qa0.1 S= 2000, 4000, 0, 50, 50 

sigma wind = 0.5 L= 0.1, 0.1 

Results: Same as VI-2. 

Block VII - These runs were made as a revalidation follow- 

ing a rewrite in the estimator 

the running time. 

Block VIII - All of these runs 

subprogram which compressed 

were made with Q = 0.1 and 

S= 4000, 4000, 0, 50, 50. This is the set of weighting 

factors finally chosen throughout the remainder of the study. 

1. sigma wind = .5 L= .25, .25 

Results: Good. At 80 sets pitch error is .5'. 

2. sigma wind = .5 L= .25, .25 

actual L =I .05, .05 

Results: Performance not appreciably 

different from VIII-l. 

3. sigma wind = .5 L= .25, .25 

actual wind - .l 

Results: Same performance as VIII-l. 

4. sigma wind = .5 L= .25, .25 

Actual vehicle had -2OZ bending frequency. 

Results: PjLtch control looks reasonable but 

there is a large vibration in the 
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bending which does not damp out until 

after max q. 

Block IX - All of these runs are for the adaptive system 

( i.e. containing the parameter identification). The first 

four resulted in program interrupts due to an exponential 

overflow in the covariance matrix. All had in c-on an 

initial unit covariance matrix P rather than the P given 

in Dl. 

5. Q=O.l S= 4000, 4000, 0, 50, 50 

sigma wind = .5 L = 025, .25 

wT= 0, 0, 0, 0, 0 

param gamma = 0, 0, 0, 0, 0 

P= 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 

Results: This run duplicates VIII-l, as it 

should and therefore provides a 

validity check. 

6. This run invalidated by a data card error causing 

P= 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 

All following runs used 

Q=O.l S= 4000, 4000, 0, 50, 50 

sigma wind = .5 L = 025, .25 

as controller design data. Further, the initial covariance 
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matrix was always that of equation Dl and all actual vehicle 

data had a 20% reduction in bending frequency. 

7. 

8. 

9. 

10. 

11. 

WC== 0, 0, 0, 0, 0 

Param gannna = 0, 0, 0, 0, 0 

Results: This run duplicated VIII-4 as it 

should providing a further validity 

check. 

WT= 0, 0, 0, 0, 0 

Param gamma = 02, OJ, 0.1, 0.1, 0 

Results: Lower vibration than 1X-7. Pitch 

is roughly the same. 

WT = 0.1, 0.1, 0.1, 0.1, 0 

Param = gamma 001, 0.1, 0.1, 0.1, 0 

Results: About the same as 1X-8. 

wT= 0.2, 0.2, 0.2, 0.2, 0 

Param gamma = 0.1, 0.1, 0.1, 0.1, 0 

Results: Again little change from 1X-8. 

WT = 0.3, 0.3, 0.3, 0.3, 0 

Param gamma = 0.1, 0.1, 0.1, 0.1, 0 

Results: Some reduction in the bending over 

1x-10. 

147 



12. wT= 0.1, 0.1, O,l, 001, 0.1 

Param gannua f 0.1, 0.1, 0.1, 0.1, 0.1 

Results: Slightly better than 1X-11, 

Block X - These runs were made with the feedforward term but 

without the parameter identification 

1. 430.1 S= 4000, 4000, 0, 50, 50 

sigma wind = .5 L- .25, .25 

Results: In comparison to VIII-l the bending 

at max q is halved but there is 

little pitch reduction (maybe 10%). 

2. Q=O.l S- 2000, 1000, 0, 50, 25 

sigmawindm.5 L = .25, .25 

Results: In comparison to block I runs the 

bending and pitch both are reduced,, 

3. Q=O.l S= 4000, 4000, 0, 50, 50 

sigma wind = .5 L = .25, .25 

actual wind = 0.1 

Results: Same performance as 1 but smoother 

pitch. 

4. Q = 0.1 S = 4000, 4000, 0, 50, 50 

sigma wind = .5 L= .25, .25 

actual L= .05, .05 
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Results: Better estimator tracking, the 

vehicle performance is unchanged. 

5. Q-O.1 s - 4000, 4000, 0, 50, 50 

sigmawind= .5 L- .25, .25 

actual vehicle had -20% bending frequency 

Results: Pitch still performs well but there 

is high bending vibration. 

6, Qm0.1 S== 2000, 1000, 0, 50, 25 

sigma wind = .5 L= .25, .25 

Actual vehicle had -20% bending frequency 

Results: Like X-5 bending vibration increases 

but pitch is controlled. 

Block XI - These are all evaluations of the adaptive system 

made with the actual vehicle bending reduced 20%. In all 

cases 

Q=O.l S= 4000, 4000, 0, 50, 50 

and the initial covariance as given in equation Dl. The 

assumed noise levels were 

sigma wind = 0.5 L= .25, .25 

and the actual noises coincided unless noted otherwise. 

1. wT= 0.5, 0.5, 0.5, 0.5, 0 

Param gamma - 0.1, 001, 0.1, 0.1, 0 
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Results: Tracking of estimator is quite good 

after first ten seconds. Atmaximum 

q pitch error is lo. 

2. wT,= 0.7, 0.7, Oe7, 0.7, 0 

Param gamma = ool, 0.1, 0.1, 0.1, 0 

Results: Same as X1-1. 

3. WT = .3, .3, e3, 03, 0 

Param gamma = 0.2, 001, 0.2, 0.15, 0 

Results: The first 20 seconds have a somewhat 

higher bending than X1-2. Thereafter 

they are the same. 

4. wT= 0.5, 0.5, 0.5, 0.5, 0 

Param gamma = 0.2, 0.1, 0.2, 0.15, 0 

Results: Very slight changes from X1-3. 

5. WT.= 0.7, 0.7, 0.7, 0.7, 0 

Param gamma = 002, 001, 0.2, 0.15, 0 

Results: Very slight changes from X1-4. 

6. Actual wind = 0.1 

wT= 0.5, 0.5, 0.5, 0.5, 0 

Param gamma = 001, 0.1, 0.1, 0.1, 0 

Results: Virtually identical to XI-l, 
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7. Actual L= 0.5, 0.5 

wT= 0.5, 0.5, 0.5, 0.5, 0 

Param gamma = 0.1, 0.1, 0.1, 0.1, 0 

Results: Performance is better than XI-l. 

Smoother control action. 

8. wT= 0.5, 0.5, 0.5, 0.5, 0.5 

Param = gannna 0.2, 0.1, 0.2, 0.15, 1.0 

Results: Performance is worse than XI-1 in 

bending estimation, resulting in 

increased vibration. 
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